Trapping Poly(ADP-Ribose) Polymerase. 2015

Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
BioMarin Pharmaceutical Inc., Novato, California jshen@bmrn.com.

Recent findings indicate that a major mechanism by which poly(ADP-ribose) polymerase (PARP) inhibitors kill cancer cells is by trapping PARP1 and PARP2 to the sites of DNA damage. The PARP enzyme-inhibitor complex "locks" onto damaged DNA and prevents DNA repair, replication, and transcription, leading to cell death. Several clinical-stage PARP inhibitors, including veliparib, rucaparib, olaparib, niraparib, and talazoparib, have been evaluated for their PARP-trapping activity. Although they display similar capacity to inhibit PARP catalytic activity, their relative abilities to trap PARP differ by several orders of magnitude, with the ability to trap PARP closely correlating with each drug's ability to kill cancer cells. In this article, we review the available data on molecular interactions between these clinical-stage PARP inhibitors and PARP proteins, and discuss how their biologic differences might be explained by the trapping mechanism. We also discuss how to use the PARP-trapping mechanism to guide the development of PARP inhibitors as a new class of cancer therapy, both for single-agent and combination treatments.

UI MeSH Term Description Entries
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067856 Poly(ADP-ribose) Polymerase Inhibitors Chemicals and drugs that inhibit the action of POLY(ADP-RIBOSE)POLYMERASES. Inhibitors of Poly(ADP-ribose) Polymerase,PARP Inhibitor,Poly(ADP-Ribose) Polymerase Inhibitor,Poly(ADP-ribosylation) Inhibitor,Inhibitors of Poly(ADP-ribose) Polymerases,PARP Inhibitors,Poly(ADP-ribosylation) Inhibitors,Inhibitor, PARP,Inhibitors, PARP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
December 2010, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
February 2003, Current medicinal chemistry,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
September 2019, Current opinion in oncology,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
September 1998, Experimental gerontology,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
November 2012, Nihon rinsho. Japanese journal of clinical medicine,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
November 1998, The Journal of biological chemistry,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
January 1988, Molecular biology reports,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
May 1996, The Histochemical journal,
Yuqiao Shen, and Mika Aoyagi-Scharber, and Bing Wang
March 1999, Molecular and cellular biochemistry,
Copied contents to your clipboard!