| D004305 |
Dose-Response Relationship, Drug |
The relationship between the dose of an administered drug and the response of the organism to the drug. |
Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response |
|
| D000520 |
alpha-Glucosidases |
Enzymes that catalyze the exohydrolysis of 1,4-alpha-glucosidic linkages with release of alpha-glucose. Deficiency of alpha-1,4-glucosidase may cause GLYCOGEN STORAGE DISEASE TYPE II. |
Acid Maltase,Lysosomal alpha-Glucosidase,Maltase,Maltases,Maltase-Glucoamylase,Neutral Maltase,Neutral alpha-Glucosidase,alpha-Glucosidase,Lysosomal alpha Glucosidase,Maltase Glucoamylase,Neutral alpha Glucosidase,alpha Glucosidase,alpha Glucosidases,alpha-Glucosidase, Lysosomal,alpha-Glucosidase, Neutral |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D015195 |
Drug Design |
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. |
Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs |
|
| D015394 |
Molecular Structure |
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. |
Structure, Molecular,Molecular Structures,Structures, Molecular |
|
| D062105 |
Molecular Docking Simulation |
A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. |
Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking |
|
| D026121 |
Indole Alkaloids |
Group of alkaloids containing a benzylpyrrole group (derived from TRYPTOPHAN). |
Indole Alkaloid,Alkaloid, Indole,Alkaloids, Indole |
|
| D065089 |
Glycoside Hydrolase Inhibitors |
Compounds that inhibit or block the activity of GLYCOSIDE HYDROLASES such as ALPHA-AMYLASES and ALPHA-GLUCOSIDASES. |
alpha-Glucosidase Inhibitor,alpha-Glucosidase Inhibitors,Intestinal alpha-Amylase Inhibitors,Pancreatic alpha-Amylase Inhibitors,alpha-Amylase Inhibitors, Pancreatic,Hydrolase Inhibitors, Glycoside,Inhibitor, alpha-Glucosidase,Inhibitors, Glycoside Hydrolase,Inhibitors, Intestinal alpha-Amylase,Inhibitors, Pancreatic alpha-Amylase,Inhibitors, alpha-Glucosidase,Intestinal alpha Amylase Inhibitors,Pancreatic alpha Amylase Inhibitors,alpha Amylase Inhibitors, Pancreatic,alpha Glucosidase Inhibitor,alpha Glucosidase Inhibitors,alpha-Amylase Inhibitors, Intestinal |
|