Characterization of a putative colonization factor (PCFO166) of enterotoxigenic Escherichia coli of serogroup O166. 1989

M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
Division of Enteric Pathogens, Central Public Health Laboratory, London, UK.

Enterotoxigenic Escherichia coli (ETEC) of serogroup O166 gave mannose-resistant haemagglutination (MRHA) with bovine and human erythrocytes. The strains did not react with antisera prepared against the known colonization factors CFA/I, CFA/II, CFA/III, CFA/IV and PCFO159:H4. Strain E7476 of serotype O166:H27, which produced heat-stable enterotoxin (ST), was examined initially. It produced fimbriae about 7 nm in diameter. On SDS-PAGE two possible fimbrial polypeptides of molecular mass 15.5 and 17.0 kDa were seen. When variants of strain E7476 were isolated, loss of ST and MRHA together was associated with loss of a 98 MDa plasmid, while loss of ST alone correlated with plasmid deletion. An absorbed anti-strain E7476 antiserum reacted specifically with the 15.5 and 17.0 kDa polypeptides in Western immunoblotting and bound to the intact fimbriae by immuno-electron microscopy. When this antiserum was used in an ELISA to examine other strains of serogroup O166, a positive reaction was obtained with all the ST- and MRHA-positive strains. One strain of serotype O71:H27 and two strains of serotype O98:H- also reacted with the absorbed anti-strain E7476 antiserum. The antiserum did not react with ETEC carrying known colonization factors. E. coli K12 and a number of E. coli of different serotypes carrying a plasmid coding for ST transferred from strain E7476, all gave MRHA and reacted with the absorbed anti-strain E7476 antiserum. The term putative colonization factor O166 (PCFO166) is proposed to describe the adhesive factor(s) on ETEC of serogroup O166 because of the similarity of properties with those of known colonization factors.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000907 Antibodies, Bacterial Immunoglobulins produced in a response to BACTERIAL ANTIGENS. Bacterial Antibodies
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D012703 Serotyping Process of determining and distinguishing species of bacteria or viruses based on antigens they share. Serotypings

Related Publications

M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
November 1985, Journal of clinical microbiology,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
September 1992, Infection and immunity,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
July 1996, Infection and immunity,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
August 1999, Infection and immunity,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
February 1997, Infection and immunity,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
December 1993, Infection and immunity,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
November 2013, Molecular microbiology,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
November 1992, Microbial pathogenesis,
M M McConnell, and H Chart, and A M Field, and M Hibberd, and B Rowe
January 1989, Infection and immunity,
Copied contents to your clipboard!