The effect of temporary meiotic attenuation on the in vitro maturation outcome of bovine oocytes. 2015

T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
Obstetrics and Gynecology Department, Assiut University, Assiut University Street, Assiut, 71515, Egypt.

The aim of this study was to investigate the effect of delaying maturation by extended culture of immature bovine oocytes in prematuration medium (PMC) containing single maturation inhibitor on their meiotic resumption and embryonic development. Bovine immature oocytes were cultured in M199 containing 10 μM of either inhibitor (roscovitine, cilostamide, or forskolin) for either 72 or 120 h followed by up to 48 h in maturation media supplemented with 7.5 IU follicle-stimulating hormone (FSH)/luteinizing hormone (LH). Two control groups were used. In untreated control, immature oocytes were cultured in the same medium as the experimental group without any inhibitors. In the FSH/LH control group, oocytes were cultured directly in the maturation medium supplemented with FSH/LH up to 48 h. In vitro matured oocytes were then inseminated with frozen-thawed bull sperm. Fertilization, defined as two-cell division 48 h post-insemination, and blastocyst formation were recorded. Total maturation rate for the 72-h group was 73%, 70%, 66%, and 69% for roscovitine, forskolin, cilostamide, and FSH/LH control, respectively, with no significant difference indicating that inhibitors have no negative effect on the oocyte maturation rate. The total fertilization rate for the 72-h group revealed that cilostamide (47%) and roscovitine (35%) were significantly higher than FSH/LH control (20%). The total blastocyst formation rates per inseminated oocytes revealed that among treatment groups, roscovitine (20%) had significantly higher rate than forskolin (9%). Overall, 72-h exposure period had better outcomes than 120 h in all the treated groups. In conclusion, prematuration culture of the bovine oocytes in the presence of maturation inhibitor for 72-h period at 10 μM concentration is sufficient in improving the bovine oocyte developmental competence.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005260 Female Females

Related Publications

T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
March 2003, Animal reproduction science,
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
April 2016, Reproduction in domestic animals = Zuchthygiene,
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
June 2015, Zygote (Cambridge, England),
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
January 2003, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
January 2008, Animal reproduction science,
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
January 1995, The British veterinary journal,
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
January 1979, Advances in experimental medicine and biology,
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
February 2008, Zygote (Cambridge, England),
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
October 2004, Biology of reproduction,
T Farghaly, and E Khalifa, and S Mostafa, and M Hussein, and M Bedaiwy, and A Ahmady
June 1995, The Journal of experimental zoology,
Copied contents to your clipboard!