Effect of conditioning lesion on axonal sprout formation at nodes of Ranvier. 1985

I G McQuarrie

The effect of a conditioning lesion on the time-course of axonal sprout formation after a subsequent testing lesion was evaluated in myelinated axons of the rat sciatic nerve. Transmission electron microscopy of longitudinal nerve sections was used to examine nodes of Ranvier located 200-500 micron proximal to the testing lesion. The conditioning lesion was a cut of the tibial nerve at the ankle; the testing lesion, made 2 weeks later, was a crush of the sciatic nerve at the hip. Sprouts were defined as unmyelinated evaginations of the nodal axolemma that (1) had reached the basement membrane of the Schwann cell, and (2) were located between the myelin sheath of the distal paranode and the basement membrane. Photomicrographs of the nodes at 9, 18, and 27 hours after the testing lesion were assigned to one of seven categories: normal, retracted, myelin degeneration, axonal degeneration, type A sprout formation (cytoskeleton absent), type B sprout formation (cytoskeleton present), and type B sprout degeneration. By 9 hours after the testing lesion, type B sprout formation was found in 9% of the nodes in control nerves (testing lesion alone) and 33% of those in conditioned nerves (P less than .01). A 33% incidence of type B sprout formation was not reached in control nerves until 27 hours after the testing lesion. Since the conditioning lesion was located 50 mm distal to the testing lesion and did not induce neuronal death, earlier sprout formation can be attributed to a neuronal response to the conditioning lesion rather than to a putative factor that arises from pre-degenerated fibers and acts on newly formed sprouts.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

I G McQuarrie
January 1993, Restorative neurology and neuroscience,
I G McQuarrie
June 1991, Journal of neurocytology,
I G McQuarrie
May 1987, Brain research,
I G McQuarrie
October 2006, Current opinion in neurobiology,
I G McQuarrie
April 2018, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry,
I G McQuarrie
January 1969, Pflugers Archiv : European journal of physiology,
I G McQuarrie
December 1985, Journal of neurocytology,
I G McQuarrie
May 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!