Induction of size reduction in Escherichia coli by near-ultraviolet light. 1985

A Caldeira de Araujo, and A Favre

Escherichia coli AB1157 cells, growing exponentially at 37 degrees C in 63B1 medium (supplemented with glucose and casamino acids) with a doubling time of 50 min, were subjected to continuous illumination with 366-nm light at a fluence of 1.5 kJ . m-2 X min-1. Under these conditions, the growth rate decreased and after 1 h of illumination, a new stable exponential mode was reached with a doubling-time of 73 min. This reduction in growth rate occurred without any change in the rate of cell division for two generations after the beginning of illumination. Survival was unaffected, implying that cell size must have decreased. This was confirmed with size distribution curves of control and illuminated cells obtained with a Coulter counter. Furthermore electron micrographs of negatively stained cells indicated that illumination results in a 30-40% decrease in cell length, the diameter increasing by 8%. Hence 366-nm light uncouples growth and division rates. Illumination under the above conditions triggered the accumulation in vivo of 8-13-linked tRNA. The stationary level of the 8-13 link, 80% of the maximal level, was reached precisely when the growth rate reached its new stable value. Furthermore, no reduction in growth rate occurred in a nuv- cell lacking 4-thiouridine in its tRNAs. Hence we conclude that the 366-nm photons trigger partial tRNA inactivation with consequent slowing down of protein synthesis and accordingly of the cell growth rate. In addition, the stringent response has at most a minor effect. In conclusion, near-ultraviolet light is able to decrease the rate of cell growth by restricting the availability of charged tRNAs, and this occurs without affecting the cell division rate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013891 Thiouridine A photoactivable URIDINE analog that is used as an affinity label. 4-Thiouridine,4 Thiouridine
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

A Caldeira de Araujo, and A Favre
August 1985, Photochemistry and photobiology,
A Caldeira de Araujo, and A Favre
April 1976, Journal of bacteriology,
A Caldeira de Araujo, and A Favre
June 1993, Free radical biology & medicine,
A Caldeira de Araujo, and A Favre
November 1992, FEMS microbiology letters,
A Caldeira de Araujo, and A Favre
January 1982, Photochemistry and photobiology,
A Caldeira de Araujo, and A Favre
August 1987, Molecular & general genetics : MGG,
A Caldeira de Araujo, and A Favre
November 1980, Photochemistry and photobiology,
Copied contents to your clipboard!