A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. 1985

J K Czop, and K F Austen

The ligand specificity of the human monocyte receptor that mediates phagocytosis of particulate activators of the human alternative complement pathway was defined by inhibiting the phagocytic response with glycans known to be present in zymosan. When monocytes in monolayers were preincubated with 100 micrograms/ml of beta-glucan and then incubated with 1.25 to 2.5 X 10(6) zymosan particles, the percentage of cells that exhibited phagocytosis was inhibited in a time-dependent manner; maximal inhibition occurred within 20 min of preincubation. beta-Glucan inhibited monocyte phagocytosis of zymosan and rabbit erythrocytes (Er) in a similar dose-dependent fashion and at 100 micrograms/ml reduced monocyte ingestion of 5 X 10(6)/ml zymosan and 2 X 10(8)/ml Er by 63 +/- 8% and 68 +/- 16% (mean +/- SD, n = 3), respectively. The other glycan constituent of zymosan, mannan, was less than 1% as active, and 10 mg/ml of mannan reduced the number of monocytes ingesting zymosan and Er by 56 +/- 12% and 26 +/- 11%, respectively. At concentrations as high as 500 micrograms/ml, beta-glucan had no effect on monocyte Fc, C3b, or fibronectin receptor-mediated functions. Enzymatic hydrolysis of beta-glucan and alpha-mannan with beta-glucosidase or beta-glucanase before their incubation with monocytes abrogated their inhibitory capacity, whereas hydrolysis with alpha-mannosidase or alpha-glucosidase did not. Neither of the two alpha-glucans tested (dextran T-70 and nigeran) affected monocyte ingestion of zymosan particles or sheep erythrocytes (Es) sensitized with rabbit 7S anti-Es (EsIgG) at concentrations as high as 2 mg/ml. In contrast, a number of beta-glucans were active against zymosan but not EsIgG ingestion with a 75% reduction in the number of monocytes ingesting zymosan occurring with 100 micrograms/ml laminarin, 500 micrograms/ml soluble pachyman, and 900 micrograms/ml of soluble pustulan. The galactan, agarose, either in suspensions at 2 mg/ml or in a soluble portion at 600 micrograms/ml failed to affect monocyte ingestion of zymosan particles or Er. Thus, the monocyte receptor for particulate activators that is specifically inhibited by beta-glucan at a rate compatible with a phagocytic process and that recognizes beta-glucans but not alpha-glucans, mannan, or galactan is a beta-glucan receptor.

UI MeSH Term Description Entries
D008351 Mannans Polysaccharides consisting of mannose units. Mannan
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003170 Complement Pathway, Alternative Complement activation initiated by the interaction of microbial ANTIGENS with COMPLEMENT C3B. When COMPLEMENT FACTOR B binds to the membrane-bound C3b, COMPLEMENT FACTOR D cleaves it to form alternative C3 CONVERTASE (C3BBB) which, stabilized by COMPLEMENT FACTOR P, is able to cleave multiple COMPLEMENT C3 to form alternative C5 CONVERTASE (C3BBB3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Alternative Complement Pathway,Properdin Pathway,Alternative Complement Activation Pathway,Complement Activation Pathway, Alternative
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D005936 Glucans Polysaccharides composed of repeating glucose units. They can consist of branched or unbranched chains in any linkages. Glucan,Polyglucose,Polyglucoses,Glucan (BO),Glucose Polymer,Polycose,Polymer, Glucose

Related Publications

J K Czop, and K F Austen
January 1989, Progress in clinical and biological research,
J K Czop, and K F Austen
May 1994, Veterinary immunology and immunopathology,
J K Czop, and K F Austen
May 1983, Journal of the Reticuloendothelial Society,
J K Czop, and K F Austen
January 1984, Scandinavian journal of immunology,
J K Czop, and K F Austen
February 1980, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!