Cloning of mitogen- and antigen-reactive B lymphocytes on filter paper discs. I. A description of the technique and of methods for the analysis of colonies. 1985

G Kelsoe

A novel technique for establishing short term clones of antigen- or mitogen-activated splenic B lymphocytes is described. Spleen cells are plated onto the surface of filter paper discs and subsequently stimulated by antigen or mitogen in situ; activated B cells proliferate and differentiate into pure colonies of cells analogous to bacterial colonies growing on agar. These colonies of lymphocytes may be characterized in a series of replica hemolytic-plaque, autoradiographic, or immunoenzyme assays making possible a full characterization of the frequency of secreted idiotopes and paratopes and of the cells that produce them. Colony induction by either antigen or mitogen occurs under identical conditions, thus a rigorous comparison between the mitogen-selected and antigen-selected antibody repertoires may be made.

UI MeSH Term Description Entries
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D009592 Nitrohydroxyiodophenylacetate Also called 4-hydroxy-3-iodo-5-nitrophenylacetate. A haptenic determinant that can be radiolabeled and used as salts and derivatives for investigations of immunogenic specificity studies. NIP-Hapten,(4-Hydroxy-3-iodo-5-nitrophenyl)acetyl,(4-Hydroxy-5-iodo-3-nitrophenyl)acetyl,5-Iodo-4-hydroxy-3-nitrophenacetyl,Hydroxyiodonitrophenylacetate,NIP Acetyl Hapten,5 Iodo 4 hydroxy 3 nitrophenacetyl,Acetyl Hapten, NIP,Hapten, NIP Acetyl,NIP Hapten
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006462 Hemolytic Plaque Technique A method to identify and enumerate cells that are synthesizing ANTIBODIES against ANTIGENS or HAPTENS conjugated to sheep RED BLOOD CELLS. The sheep red blood cells surrounding cells secreting antibody are lysed by added COMPLEMENT producing a clear zone of HEMOLYSIS. (From Illustrated Dictionary of Immunology, 3rd ed) Jerne's Plaque Technique,Hemolytic Plaque Technic,Jerne's Plaque Technic,Hemolytic Plaque Technics,Hemolytic Plaque Techniques,Jerne Plaque Technic,Jerne Plaque Technique,Jernes Plaque Technic,Jernes Plaque Technique,Plaque Technic, Hemolytic,Plaque Technic, Jerne's,Plaque Technics, Hemolytic,Plaque Technique, Hemolytic,Plaque Technique, Jerne's,Plaque Techniques, Hemolytic,Technic, Hemolytic Plaque,Technic, Jerne's Plaque,Technics, Hemolytic Plaque,Technique, Hemolytic Plaque,Technique, Jerne's Plaque,Techniques, Hemolytic Plaque
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000916 Antibody Diversity The phenomenon of immense variability characteristic of ANTIBODIES. It enables the IMMUNE SYSTEM to react specifically against the essentially unlimited kinds of ANTIGENS it encounters. Antibody diversity is accounted for by three main theories: (1) the Germ Line Theory, which holds that each antibody-producing cell has genes coding for all possible antibody specificities, but expresses only the one stimulated by antigen; (2) the Somatic Mutation Theory, which holds that antibody-producing cells contain only a few genes, which produce antibody diversity by mutation; and (3) the Gene Rearrangement Theory, which holds that antibody diversity is generated by the rearrangement of IMMUNOGLOBULIN VARIABLE REGION gene segments during the differentiation of the ANTIBODY-PRODUCING CELLS. Germ Line Theory,Antibody Diversities,Diversities, Antibody,Diversity, Antibody,Germ Line Theories,Theories, Germ Line,Theory, Germ Line
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

G Kelsoe
January 1975, Scandinavian journal of immunology,
G Kelsoe
January 1974, Analytical biochemistry,
G Kelsoe
January 1962, Acta pathologica et microbiologica Scandinavica,
G Kelsoe
March 1975, The Southeast Asian journal of tropical medicine and public health,
G Kelsoe
April 1983, Seikagaku. The Journal of Japanese Biochemical Society,
G Kelsoe
June 1988, Annals of tropical medicine and parasitology,
Copied contents to your clipboard!