Calcium currents in GH3 cultured pituitary cells under whole-cell voltage-clamp: inhibition by voltage-dependent potassium currents. 1985

F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben

To isolate inward Ca2+ currents in GH3 rat pituitary cells, an inward Na+ current as well as two outward K+ currents, a transient voltage-dependent current (IKV) and a slowly rising Ca2+-activated current (IKCa), must be suppressed. Blockage of these outward currents, usually achieved by replacement of intracellular K+ with Cs+, reveals sustained inward currents. Selective blockage of either K+ current can be accomplished in the presence of intracellular K+ by use of quaternary ammonium ions. When IKCa and Na+ currents are blocked, the net current elicited by stepping the membrane potential (Vm) from -60 to 0 mV is inward first, becomes outward and peaks in 10-30 msec, and finally becomes inward again. Under this condition, in which both IKV and Ca2+ currents should be present throughout the duration of the voltage step, the Ca2+ current was not detected at the time of peak outward current. That is, plots of peak outward current vs. Vm are monotonic and are not modified by nisoldipine or low external Ca2+ as would be expected if Ca2+ currents were present. However, similar plots at times other than at peak current are not monotonic and are altered by nisoldipine or low Ca2+ (i.e., inward currents decrease and plots become monotonic). When K+ channels are first inactivated by holding Vm at -30 mV, a sustained Ca2+ current is always observed upon stepping Vm to 0 mV. Furthermore, substitution of Ba2+ for Ca2+ causes blockage of IKV and inhibition of this current results in inward Ba2+ currents with square wave kinetics. These data indicate that the Ca2+ current is completely inhibited at peak outward IKV and that Ca2+ conductance is progressively disinhibited as the transient K+ current declines due to channel inactivation. This suggests that in GH3 cells Ca2+ channels are regulated by IKV.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
January 1986, Advances in experimental medicine and biology,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
May 1986, The Journal of physiology,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
April 1977, Science (New York, N.Y.),
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
May 1978, The Journal of physiology,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
January 1985, Nature,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
April 2006, European journal of pharmacology,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
April 2001, Biochemical pharmacology,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
July 1992, Journal of neuroscience research,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
August 1991, Proceedings. Biological sciences,
F Barros, and G M Katz, and G J Kaczorowski, and R L Vandlen, and J P Reuben
March 1993, Biochemical and biophysical research communications,
Copied contents to your clipboard!