Na-Ca exchange: stoichiometry and electrogenicity. 1985

D A Eisner, and W J Lederer

This review discusses the evidence concerning the stoichiometry of Na-Ca exchange. In particular we consider whether the Na-Ca exchange has been shown to transport more than two Na+ ions per Ca2+ ion and therefore whether it generates an electric current. The first part of this review discusses both direct and indirect evidence concerning the stoichiometry of the exchange and its possible voltage dependence. We find that, although there is some evidence suggesting that more than two Na+ ions may exchange for each Ca2+ ion, most of the available evidence is equivocal and cannot fix the stoichiometry precisely. Furthermore, using a simple and explicit circulating carrier model for the Na-Ca exchange, we show that the effect of membrane potential on the Na-Ca exchange may be considerably more complicated than is generally believed. In particular we find that both electrogenic and electroneutral exchanges will be affected by membrane potential. We therefore conclude that the demonstration of the voltage dependence of the Na-Ca exchange does not necessarily imply that it is electrogenic. Additionally, this analysis shows that, apart from a restricted range near thermodynamic equilibrium, it is impossible to predict either the magnitude or the direction of the effects of membrane potential on the exchange. In the second part of the review we consider whether any known membrane currents may be attributed to Na-Ca exchange. We show, in contrast to previous suggestions, that the Na-Ca exchange can theoretically produce a current that appears to be activated by intracellular Ca and that has a reversal potential. However, the experimental demonstration that a given current is produced by Na-Ca exchange is hampered by the existence of other Ca- and Na-dependent currents. In conclusion, we feel that there is no evidence that allows any particular membrane current to be unambiguously identified with the Na-Ca exchange.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007474 Ion Exchange Reversible chemical reaction between a solid, often one of the ION EXCHANGE RESINS, and a fluid whereby ions may be exchanged from one substance to another. This technique is used in water purification, in research, and in industry. Exchange, Ion
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D A Eisner, and W J Lederer
January 1991, Annals of the New York Academy of Sciences,
D A Eisner, and W J Lederer
June 1989, The Journal of general physiology,
D A Eisner, and W J Lederer
October 1989, Circulatory shock,
D A Eisner, and W J Lederer
November 2002, Annals of the New York Academy of Sciences,
D A Eisner, and W J Lederer
May 1987, The American journal of physiology,
D A Eisner, and W J Lederer
January 1996, Bulletin et memoires de l'Academie royale de medecine de Belgique,
D A Eisner, and W J Lederer
January 1991, Annals of the New York Academy of Sciences,
D A Eisner, and W J Lederer
March 1995, Biochimica et biophysica acta,
D A Eisner, and W J Lederer
January 1991, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!