Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. 1985

D Prasher, and R O McCann, and M J Cormier

Aequorin is a bioluminescent protein which consists of a polypeptide chain (apoaequorin), coelenterate luciferin, and bound oxygen. Aequorin produces blue light upon binding Ca2+. We have isolated six recombinant pBR322 plasmids which contain apoaequorin cDNA sequences. A mixed synthetic pBR322 plasmids which contain apoaequorin cDNA sequences. A mixed synthetic oligonucleotide probe was used to identify these cDNAs. An extract of an E. coli strain possessing the largest cDNA contained apoaequorin. This apoaequorin can be converted to aequorin in the presence of coelenterate luciferin, 2-mercaptoethanol, and O2. This cDNA is therefore apparently full-length.

UI MeSH Term Description Entries
D008164 Luminescent Proteins Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors. Bioluminescent Protein,Bioluminescent Proteins,Luminescent Protein,Photoprotein,Photoproteins,Protein, Bioluminescent,Protein, Luminescent,Proteins, Bioluminescent,Proteins, Luminescent
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000331 Aequorin A photoprotein isolated from the bioluminescent jellyfish Aequorea. It emits visible light by an intramolecular reaction when a trace amount of calcium ion is added. The light-emitting moiety in the bioluminescence reaction is believed to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine (AF-350). Aequorine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

D Prasher, and R O McCann, and M J Cormier
May 1985, Proceedings of the National Academy of Sciences of the United States of America,
D Prasher, and R O McCann, and M J Cormier
October 1969, Biochemistry,
D Prasher, and R O McCann, and M J Cormier
March 2002, European journal of biochemistry,
D Prasher, and R O McCann, and M J Cormier
November 1983, Nucleic acids research,
D Prasher, and R O McCann, and M J Cormier
January 2011, Bioscience, biotechnology, and biochemistry,
D Prasher, and R O McCann, and M J Cormier
August 1963, Journal of cellular and comparative physiology,
D Prasher, and R O McCann, and M J Cormier
January 1999, The Journal of eukaryotic microbiology,
D Prasher, and R O McCann, and M J Cormier
August 2002, Biochemical genetics,
D Prasher, and R O McCann, and M J Cormier
August 1997, Analytical chemistry,
Copied contents to your clipboard!