Effects of the dynein inhibitor ciliobrevin on the flagellar motility of sea urchin spermatozoa. 2015

Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan.

Ciliobrevin has recently been found to be a membrane-permeable inhibitor that is specific to AAA+ molecular motors such as cytoplasmic dyneins. In this study, we investigated how ciliobrevin inhibited the motility of sperm from sea urchins: Hemicentrotus pulcherrimus, Pseudocentrotus depressus, and Anthocidaris crassispina. After application of 100 μM of ciliobrevin A to live spermatozoa, swimming speed decreased gradually and flagellar motion stopped almost completely within 5 to 10 min. This inhibition was reversible and the frequency of flagellar beating was reduced in a concentration-dependent manner. Ciliobrevin had similar inhibitory effects on the flagellar beating of demembranated and reactivated sperm and the sliding disintegration of trypsin-treated axonemes. We also analyzed the curvature and shear angle of the beating flagella and found that the proximal region of the sperm flagellum was less sensitive to ciliobrevin compared with more distal regions, where bending motions were blocked completely. Interestingly, the shear angle analysis of flagellar motility showed that ciliobrevin induced highly asymmetric bends in the proximal region of the flagellum. These results suggest that there is heterogeneity in the inhibitory thresholds of dynein motors, which depend on the regions along the flagellar shaft (proximal or distal) and on the sites of doublets in the flagellar cross-section (doublet numbers). We expect that it will be possible to map the functional differences in dynein subtypes along and/or around the cross-sections of flagellar axonemes by analyzing the inhibitory effects of ciliobrevin.

UI MeSH Term Description Entries
D008297 Male Males
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013082 Sperm Tail The posterior filiform portion of the spermatozoon (SPERMATOZOA) that provides sperm motility. Sperm Flagellum,Flagellum, Sperm,Flagellums, Sperm,Sperm Flagellums,Sperm Tails,Tail, Sperm,Tails, Sperm
D052999 Quinazolinones Chemicals with two conjoined aromatic rings incorporating two nitrogen atoms and one of the carbons oxidized with a keto oxygen. Quinazolinedione,Quinazolinone,Quinazolinediones

Related Publications

Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
January 1975, Society of General Physiologists series,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
January 1981, Experientia,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
August 1974, The Biological bulletin,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
February 1969, The Journal of experimental biology,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
October 1989, Experimental cell research,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
August 1982, Journal of biochemistry,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
May 2000, Archives of environmental contamination and toxicology,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
July 1987, Journal of biochemistry,
Yuuko Wada, and Shoji A Baba, and Shinji Kamimura
August 1980, Archives of biochemistry and biophysics,
Copied contents to your clipboard!