Bond strength of different restorative materials to light-curable mineral trioxide aggregate. 2015

K Cantekin
Department of Pediatric Dentistry, Faculty of Dentistry, Erciyes University, Kayseri, Turkey.

The aim of the present study was to evaluate the bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass-ionomer cement (GIC) in comparison to TheraCal and to compare those findings with the reference pulp capping material (MTA). METHODS A total of 90 acrylic blocks were prepared. Each of the blocks were prepared as 15 mm high and 10 mm diameter and the blocks had a 2 mm high and a 5 mm diameter central hole. In 45 of the samples, the holes were fully filled with TheraCal and in the other 45 samples, the holes were fully filled with MTA. The TheraCal and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: Methacrylate-based (MB) composite; Group-2: Silorane-based (SB) composite; and Group-3: Glass-ionomer cement (GIC). For the shear bond strength (SBS) test, each block was secured in a universal testing machine. After the SBS test, the fractured surfaces were examined under a stereomicroscope at ×25 magnification. RESULTS The analysis of variance that compared the experimental groups revealed the presence of significant differences among the groups (P < 0.001). The highest (19.3 MPa) and the lowest (3.4 MPa) bond strength value were recorded for the MB composite-TheraCal and the GIC-TheraCal, respectively.There were significant differences in bond strength between the TheraCal and the MTA groups for the MB composite subgroup (P < 0.001) and the SB composite subgroup (P < 0.05); however, there was no significant difference in bond strength for the GIC subgroup (P ≯ 0.05). Conlusions: The results from this in vitro study suggest that the new pulp capping material, known as light-curable MTA, showed clinically acceptable and higher shear bond scores compared to MTA when used with the MB composite.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008689 Methacrylates Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group. Methacrylate
D010087 Oxides Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides. Oxide
D001840 Dental Bonding An adhesion procedure for orthodontic attachments, such as plastic DENTAL CROWNS. This process usually includes the application of an adhesive material (DENTAL CEMENTS) and letting it harden in-place by light or chemical curing. Bonding, Dental,Cure of Orthodontic Adhesives,Curing, Dental Cement,Dental Cement Curing,Orthodontic Adhesives Cure
D003188 Composite Resins Synthetic resins, containing an inert filler, that are widely used in dentistry. Composite Resin,Resin, Composite,Resins, Composite
D003764 Dental Materials Materials used in the production of dental bases, restorations, impressions, prostheses, etc. Dental Material,Material, Dental,Materials, Dental
D003799 Dental Stress Analysis The description and measurement of the various factors that produce physical stress upon dental restorations, prostheses, or appliances, materials associated with them, or the natural oral structures. Analyses, Dental Stress,Analysis, Dental Stress,Stress Analyses, Dental,Stress Analysis, Dental,Dental Stress Analyses
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D005899 Glass Ionomer Cements A polymer obtained by reacting polyacrylic acid with a special anion-leachable glass (alumino-silicate). The resulting cement is more durable and tougher than others in that the materials comprising the polymer backbone do not leach out. Glass Ionomer Cement,Glass Polyalkenoate Cement,Polyalkenoate Cement,Polyalkenoate Cements,Glass Polyalkenoate Cements,Glass-Ionomer Cement,Cement, Glass Ionomer,Cement, Glass Polyalkenoate,Cement, Glass-Ionomer,Cement, Polyalkenoate,Cements, Glass Ionomer,Cements, Glass Polyalkenoate,Cements, Glass-Ionomer,Cements, Polyalkenoate,Glass-Ionomer Cements,Ionomer Cement, Glass,Polyalkenoate Cement, Glass
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K Cantekin
June 2023, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine,
K Cantekin
June 2014, Dental traumatology : official publication of International Association for Dental Traumatology,
K Cantekin
January 2018, International journal of health sciences,
K Cantekin
August 2013, Dental traumatology : official publication of International Association for Dental Traumatology,
K Cantekin
August 2012, Journal of the American Dental Association (1939),
Copied contents to your clipboard!