Nucleotide sequence and organization of full length human U4 RNA pseudogenes. 1989

C Bark, and U Pettersson
Department of Medical Genetics, Uppsala University, Sweden.

Two loci encoding human U4 RNA, designated U4/7 and U4/14, have been isolated and sequenced. Both are pseudogenes in that their sequences do not match any identified human U4 RNA species perfectly. The U4/7 locus harbours a full-length pseudogene of 144 bp with eight base substitutions in the structural region. This pseudogene might be derived from a hitherto unidentified human U4 RNA gene. The second locus, U4/14, has a complex structure; the structural sequence of a U4 gene has apparently been integrated into an Alu sequence.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011544 Pseudogenes Genes bearing close resemblance to known genes at different loci, but rendered non-functional by additions or deletions in structure that prevent normal transcription or translation. When lacking introns and containing a poly-A segment near the downstream end (as a result of reverse copying from processed nuclear RNA into double-stranded DNA), they are called processed genes. Genes, Processed,beta-Tubulin Pseudogene,Gene, Processed,Processed Gene,Processed Genes,Pseudogene,Pseudogene, beta-Tubulin,Pseudogenes, beta-Tubulin,beta Tubulin Pseudogene,beta-Tubulin Pseudogenes
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012342 RNA, Small Nuclear Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors. Low Molecular Weight Nuclear RNA,Small Nuclear RNA,snRNA,Chromatin-Associated RNA,Small Molecular Weight RNA,Chromatin Associated RNA,RNA, Chromatin-Associated

Related Publications

C Bark, and U Pettersson
April 1981, The Journal of biological chemistry,
C Bark, and U Pettersson
June 1985, Journal of virology,
C Bark, and U Pettersson
October 1992, FEBS letters,
C Bark, and U Pettersson
May 1989, Nucleic acids research,
C Bark, and U Pettersson
July 1986, The Journal of biological chemistry,
C Bark, and U Pettersson
October 1986, Proceedings of the National Academy of Sciences of the United States of America,
C Bark, and U Pettersson
April 1994, Biochemical and biophysical research communications,
C Bark, and U Pettersson
November 1989, Nucleic acids research,
C Bark, and U Pettersson
September 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!