In Vitro Studies on Degradation of Gamma-L-Glutamyl-L-Cysteine and Gamma-L-Glutamyl-D-Cysteine in Blood: Implications for Treatment of Stroke. 2015

Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
Departments of 1Physiology and Biophysics and 2Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL.

Treatment for ischemic stroke involves a thrombolytic agent to re-establish blood flow in the brain. However, delayed reperfusion may cause injury to brain capillaries. Previous studies indicate that the antioxidant gamma-L-glutamyl-L-cysteine (γ-Glu-Cys) contributes to reducing reperfusion injury to the cerebral vasculature in rats, when administered intravascularly. To determine the stability of γ-Glu-Cys in blood, the peptide was incubated in rat serum in vitro, and its degradation was quantified by high-pressure liquid chromatography. The half-time (t1/2) for degradation of γ-Glu-Cys was 11 ± 1 minute (mean ± SD, n = 3). A similar pattern of degradation was observed when γ-Glu-Cys was incubated in the presence of human plasma (t1/2 = 17 ± 8 minutes, n = 3). In a second series of experiments, degradation of an analog (γ-Glu-D-Cys) was tested in rat serum and found to be more stable than the native molecule. The initial velocity for degradation of γ-Glu-D-Cys (0.12 ± 0.02 mM/min; mean ± SD, n = 3) was significantly (P = 0.006) less than that of γ-Glu-Cys (0.22 ± 0.03 mM/min; mean ± SD, n = 3). Furthermore, an in vitro assay indicated that the analog has as an oxidative capacity that equals that of the original peptide in the presence of rat serum and human plasma. Finally, both peptides were found to be similarly effective in preventing lysis of intact cells using in vitro assays. These studies show that γ-Glu-Cys remains intact in blood for several minutes, and the analog γ-Glu-D-Cys may be a more stable, but similarly effective antioxidant.

UI MeSH Term Description Entries
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D005343 Fibrinolytic Agents Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN. Antithrombic Drug,Antithrombotic Agent,Antithrombotic Agents,Fibrinolytic Agent,Fibrinolytic Drug,Thrombolytic Agent,Thrombolytic Agents,Thrombolytic Drug,Antithrombic Drugs,Fibrinolytic Drugs,Thrombolytic Drugs,Agent, Antithrombotic,Agent, Fibrinolytic,Agent, Thrombolytic,Agents, Antithrombotic,Drug, Antithrombic,Drug, Fibrinolytic,Drug, Thrombolytic,Drugs, Antithrombic
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D055550 Protein Stability The ability of a protein to retain its structural conformation or its activity when subjected to physical or chemical manipulations. Protein Stabilities,Stabilities, Protein,Stability, Protein

Related Publications

Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
December 1963, Bollettino della Societa italiana di biologia sperimentale,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
April 1996, Journal of medicinal chemistry,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
November 1990, Acta crystallographica. Section C, Crystal structure communications,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
April 1977, Canadian journal of biochemistry,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
September 1964, Chemical & pharmaceutical bulletin,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
October 1967, Archives of biochemistry and biophysics,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
February 1995, Research communications in molecular pathology and pharmacology,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
August 2020, Journal of biomolecular structure & dynamics,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
November 1964, Biochimica et biophysica acta,
Nsisong Ikpa, and Rachel Forman, and Kendra Garchow, and Ernest Sukowski, and Darryl R Peterson
July 1962, Biochemistry,
Copied contents to your clipboard!