Multiple cAMP-binding proteins in Aplysia tissues. 1989

M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York 10032.

While it is recognized that cAMP is able to regulate distinct cellular processes differentially, the molecular basis for the diversity of its effects remains unclear. Using photoaffinity labeling with 32P-8 azido-cAMP and two-dimensional gel analysis, we have identified 26 electrophoretic variants of cAMP-binding proteins in the six different tissues of the marine mollusc Aplysia californica sampled. Some of these proteins are found in most tissues, others only in a few; still others appear to be restricted to a single tissue. All of these proteins bind cAMP specifically. The two-dimensional polyacrylamide gel electrophoretic patterns of binding proteins seen in the different tissues fall into three classes. One pattern is shared by the nervous system and embryos. The second is found in muscular tissues (heart, buccal muscle, siphon, and gill). The third pattern is specific to sperm. The presence of distinct subsets of cAMP-binding proteins in different tissues suggests that at least some of the diversity in cAMP's regulatory function may result from diversity in the proteins that bind it.

UI MeSH Term Description Entries
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002373 Cyclic AMP Receptor Protein A transcriptional regulator in prokaryotes which, when activated by binding cyclic AMP, acts at several promoters. Cyclic AMP receptor protein was originally identified as a catabolite gene activator protein. It was subsequently shown to regulate several functions unrelated to catabolism, and to be both a negative and a positive regulator of transcription. Cell surface cyclic AMP receptors are not included (CYCLIC AMP RECEPTORS), nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins, which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Catabolic Gene Activators,Catabolite Activator Protein,Catabolite Gene Activator Protein,Catabolite Gene Activator Proteins,Activator Protein, Catabolite,Activator Proteins, Catabolite,Activator, Catabolic Gene,Activators, Catabolic Gene,Catabolic Gene Activator,Catabolite Activator Proteins,Catabolite Regulator Protein,Catabolite Regulator Proteins,Cyclic AMP Receptor Proteins,Gene Activator, Catabolic,Gene Activators, Catabolic,Protein, Catabolite Activator,Protein, Catabolite Regulator,Proteins, Catabolite Activator,Proteins, Catabolite Regulator,Regulator Protein, Catabolite,Regulator Proteins, Catabolite,cAMP Receptor Protein,cAMP Receptor Proteins,Protein, cAMP Receptor,Proteins, cAMP Receptor,Receptor Protein, cAMP,Receptor Proteins, cAMP
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
January 1986, The Journal of cell biology,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
August 1991, Cellular and molecular neurobiology,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
January 1994, The Journal of biological chemistry,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
January 1982, Radiobiologiia,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
June 1993, The European journal of neuroscience,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
July 1998, Proceedings of the National Academy of Sciences of the United States of America,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
December 1992, Proceedings of the National Academy of Sciences of the United States of America,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
November 1982, Biochemical and biophysical research communications,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
April 1989, Proceedings of the National Academy of Sciences of the United States of America,
M Palazzolo, and F Katz, and T E Kennedy, and J H Schwartz
May 1989, Molecular pharmacology,
Copied contents to your clipboard!