Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. 2015

Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
Antimicrobial Discovery Center and Department of Biology, Northeastern University, Boston, Massachusetts, USA.

Persisters are dormant variants that form a subpopulation of drug-tolerant cells largely responsible for the recalcitrance of chronic infections. However, our understanding of the genetic basis of antibiotic tolerance remains incomplete. In this study, we applied transposon sequencing (Tn-Seq) to systematically investigate the mechanism of aminoglycoside tolerance in Escherichia coli. We constructed a highly saturated transposon library that covered the majority of E. coli genes and promoter regions and exposed a stationary-phase culture to a lethal dose of gentamicin. Tn-Seq was performed to evaluate the survival of each mutant to gentamicin exposure. We found that the disruption of several distinct pathways affected gentamicin tolerance. We identified 105 disrupted gene/promoter regions with a more than 5-fold reduction in gentamicin tolerance and 37 genes with a more than 5-fold increased tolerance. Functional cluster analysis suggests that deficiency in motility and amino acid synthesis significantly diminished persisters tolerant to gentamicin, without changing the MIC. Amino acid auxotrophs, including serine, threonine, glutamine, and tryptophan auxotrophs, exhibit strongly decreased tolerance to gentamicin, which cannot be restored by supplying the corresponding amino acids to the culture. Interestingly, supplying these amino acids to wild-type E. coli sensitizes stationary-phase cells to gentamicin, possibly through the inhibition of amino acid synthesis. In addition, we found that the deletion of amino acid synthesis genes significantly increases gentamicin uptake in stationary phase, while the deletion of flagellar genes does not affect gentamicin uptake. We conclude that activation of motility and amino acid biosynthesis contributes to the formation of persisters tolerant to gentamicin. OBJECTIVE Persisters are responsible for the recalcitrance of chronic infections to antibiotics. The pathways of persister formation in E. coli are redundant, and our understanding of the mechanism of persister formation is incomplete. Using a highly saturated transposon insertion library, we systematically analyzed the contribution of different cellular processes to the formation of persisters tolerant to aminoglycosides. Unexpectedly, we found that activation of amino acid synthesis and motility strongly contributes to persister formation. The approach used in this study leads to an understanding of aminoglycoside tolerance and provides a general method to identify genes affecting persister formation.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005839 Gentamicins A complex of closely related aminoglycosides obtained from MICROMONOSPORA purpurea and related species. They are broad-spectrum antibiotics, but may cause ear and kidney damage. They act to inhibit PROTEIN BIOSYNTHESIS. Gentamicin Sulfate (USP),Gentamycin,G-Myticin,Garamycin,Gentacycol,Gentamicin,Gentamicin Sulfate,Gentamycins,Gentavet,Genticin,G Myticin,GMyticin,Sulfate, Gentamicin
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000617 Aminoglycosides Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS. Aminoglycoside
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions
D053898 Biosynthetic Pathways Sets of enzymatic reactions occurring in organisms and that form biochemicals by making new covalent bonds. Biosynthetic Pathway,Pathway, Biosynthetic,Pathways, Biosynthetic

Related Publications

Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
October 2005, Microbiology (Reading, England),
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
March 2018, Advances in medical sciences,
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
January 2015, Frontiers in microbiology,
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
December 2004, Journal of bacteriology,
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
January 2013, PLoS pathogens,
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
May 1983, Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale A, Medizinische Mikrobiologie, Infektionskrankheiten und Parasitologie = International journal of microbiology and hygiene. A, Medical microbiology, infectious...,
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
August 2020, Antibiotics (Basel, Switzerland),
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
February 2017, mBio,
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
December 2018, Biochemical and biophysical research communications,
Yue Shan, and David Lazinski, and Sarah Rowe, and Andrew Camilli, and Kim Lewis
May 2013, Molecular cell,
Copied contents to your clipboard!