Effects of Dietary n-3 Fatty Acids on Hepatic and Peripheral Insulin Sensitivity in Insulin-Resistant Humans. 2015

Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN.

OBJECTIVE Dietary n-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), prevent insulin resistance and stimulate mitochondrial biogenesis in rodents, but the findings of translational studies in humans are thus far ambiguous. The aim of this study was to evaluate the influence of EPA and DHA on insulin sensitivity, insulin secretion, and muscle mitochondrial function in insulin-resistant, nondiabetic humans using a robust study design and gold-standard measurements. METHODS Thirty-one insulin-resistant adults received 3.9 g/day EPA+DHA or placebo for 6 months in a randomized double-blind study. Hyperinsulinemic-euglycemic clamp with somatostatin was used to assess hepatic and peripheral insulin sensitivity. Postprandial glucose disposal and insulin secretion were measured after a meal. Measurements were performed at baseline and after 6 months of treatment. Abdominal fat distribution was evaluated by MRI. Muscle oxidative capacity was measured in isolated mitochondria using high-resolution respirometry and noninvasively by magnetic resonance spectroscopy. RESULTS Compared with placebo, EPA+DHA did not alter peripheral insulin sensitivity, postprandial glucose disposal, or insulin secretion. Hepatic insulin sensitivity, determined from the suppression of endogenous glucose production by insulin, exhibited a small but significant improvement with EPA+DHA compared with placebo. Muscle mitochondrial function was unchanged by EPA+DHA or placebo. CONCLUSIONS This study demonstrates that dietary EPA+DHA does not improve peripheral glucose disposal, insulin secretion, or skeletal muscle mitochondrial function in insulin-resistant nondiabetic humans. There was a modest improvement in hepatic insulin sensitivity with EPA+DHA, but this was not associated with any improvements in clinically meaningful outcomes.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004281 Docosahexaenoic Acids C22-unsaturated fatty acids found predominantly in FISH OILS. Docosahexaenoate,Docosahexaenoic Acid,Docosahexenoic Acids,Docosahexaenoic Acid (All-Z Isomer),Docosahexaenoic Acid Dimer (All-Z Isomer),Docosahexaenoic Acid, 3,6,9,12,15,18-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cerium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cesium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Potassium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(Z,Z,Z,Z,Z,E-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer, Sodium Salt,Docosahexaenoic Acid, Sodium Salt,Acid, Docosahexaenoic,Acids, Docosahexaenoic,Acids, Docosahexenoic
D004311 Double-Blind Method A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment. Double-Masked Study,Double-Blind Study,Double-Masked Method,Double Blind Method,Double Blind Study,Double Masked Method,Double Masked Study,Double-Blind Methods,Double-Blind Studies,Double-Masked Methods,Double-Masked Studies,Method, Double-Blind,Method, Double-Masked,Methods, Double-Blind,Methods, Double-Masked,Studies, Double-Blind,Studies, Double-Masked,Study, Double-Blind,Study, Double-Masked

Related Publications

Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
June 2008, Journal of investigative medicine : the official publication of the American Federation for Clinical Research,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
January 2006, The Journal of nutritional biochemistry,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
November 2004, Diabetes, obesity & metabolism,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
February 2015, Metabolism: clinical and experimental,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
January 2009, Nutricion hospitalaria,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
August 2002, The Journal of nutrition,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
January 1988, Progress in clinical and biological research,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
August 1996, The Journal of nutrition,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
December 2003, Nutritional neuroscience,
Antigoni Z Lalia, and Matthew L Johnson, and Michael D Jensen, and Kazanna C Hames, and John D Port, and Ian R Lanza
January 1988, Progress in clinical and biological research,
Copied contents to your clipboard!