The transverse location of the retinal chromophore in the purple membrane by diffusion-enhanced energy transfer. 1989

R O Leder, and S L Helgerson, and D D Thomas
Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455.

We have used fluorescence energy transfer in the rapid-diffusion limit (RDL) to estimate the trans-membrane depth of retinal in the purple membrane (PM). Chelates of Tb(III) are excellent energy donors for the retinal chromophore of PM, having a maximum Ro value for Förster energy transfer of approximately 62 A (assuming a donor quantum yield of 1). Energy transfer rates were measured from the time-resolved emission kinetics of the donor. The distance of closest approach between chelates and the chromophore was estimated by simulating RDL energy-transfer rate constants according to geometric models of either PM sheets or membrane vesicles. The apparent rate constant for RDL energy transfer between Tb(III)HED3A and retinal in PM sheets is 1.5(+/- 0.1) x 10(6) M-1 s-1, corresponding to a depth of approximately 10 +/- 2 A for the retinal chromophore. Cell envelope vesicles (CEVs) from Halobacterium halobium were studied by using RDL energy transfer to assess the proximity of retinal to either the extracellular or intracellular face of the PM. The estimated depth of retinal from the extravesicular face of the PM is 10 +/- 3 A, based on the RDL energy-transfer rate constant. Energy-transfer levels to retinal in the PM were estimated by an indirect method with energy donors trapped in the inner-aqueous space of CEVs. The rate constants derived for this arrangement are too low to be consistent with the shortest depth of retinal deduced for PM sheets. Thus, the intravesticular face of CEVs, corresponding to the cytoplasmic face of cells, is the more distant surface from the chromophore of bacteriorhodopsin.

UI MeSH Term Description Entries
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D001436 Bacteriorhodopsins Rhodopsins found in the PURPLE MEMBRANE of halophilic archaea such as HALOBACTERIUM HALOBIUM. Bacteriorhodopsins function as an energy transducers, converting light energy into electrochemical energy via PROTON PUMPS. Bacteriorhodopsin
D012172 Retinaldehyde A diterpene derived from the carotenoid VITAMIN A which functions as the active component of the visual cycle. It is the prosthetic group of RHODOPSIN (i.e., covalently bonded to ROD OPSIN as 11-cis-retinal). When stimulated by visible light, rhodopsin transforms this cis-isomer of retinal to the trans-isomer (11-trans-retinal). This transformation straightens-out the bend of the retinal molecule and causes a change in the shape of rhodopsin triggering the visual process. A series of energy-requiring enzyme-catalyzed reactions convert the 11-trans-retinal back to the cis-isomer. 11-trans-Retinal,3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-Nonatetraenal,Axerophthal,Retinal,Retinene,Retinyl Aldehydde,Vitamin A Aldehyde,all-trans-Retinal,11-cis-Retinal,11 cis Retinal,11 trans Retinal,Aldehydde, Retinyl,Aldehyde, Vitamin A,all trans Retinal
D012176 Retinoids A group of tetraterpenes, with four terpene units joined head-to-tail. Biologically active members of this class are used clinically in the treatment of severe cystic ACNE; PSORIASIS; and other disorders of keratinization. Retinoid

Related Publications

R O Leder, and S L Helgerson, and D D Thomas
March 1983, Journal of molecular biology,
R O Leder, and S L Helgerson, and D D Thomas
June 1979, Journal of molecular biology,
R O Leder, and S L Helgerson, and D D Thomas
December 1981, Journal of molecular biology,
R O Leder, and S L Helgerson, and D D Thomas
January 1982, Journal of molecular biology,
R O Leder, and S L Helgerson, and D D Thomas
April 1978, Biophysical journal,
R O Leder, and S L Helgerson, and D D Thomas
April 1976, Biophysics of structure and mechanism,
R O Leder, and S L Helgerson, and D D Thomas
January 1982, Annual review of biophysics and bioengineering,
R O Leder, and S L Helgerson, and D D Thomas
December 1988, Biophysical journal,
Copied contents to your clipboard!