Construction of stable mammalian cell lines for inducible expression of G protein-coupled receptors. 2015

Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom.

The large-scale expression of many membrane proteins, including the members of the G protein-coupled receptor superfamily, in a correctly folded and fully functional form remains a formidable challenge. In this chapter, we focus on the construction of stable mammalian cell lines to overcome this hurdle. First, we will outline the steps for establishing a tightly regulated gene expression system in human HEK293S cells. This system utilizes separate plasmids containing components of well-defined genetic control elements from the Escherichia coli tetracycline operon to control the powerful cytomegalovirus immediate early enhancer/promoter. Next, we describe the assembly of this expression system into HEK293S cells and a derivative cell line devoid of complex N-glycosylation. Finally, we describe methods for the growth of these cells lines in scalable suspension culture for the preparation of milligram amounts of recombinant protein.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013752 Tetracycline A naphthacene antibiotic that inhibits AMINO ACYL TRNA binding during protein synthesis. 4-Epitetracycline,Achromycin,Achromycin V,Hostacyclin,Sustamycin,Tetrabid,Tetracycline Hydrochloride,Tetracycline Monohydrochloride,Topicycline,4 Epitetracycline
D043562 Receptors, G-Protein-Coupled The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled

Related Publications

Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
January 2015, Methods in enzymology,
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
January 2011, Methods in molecular biology (Clifton, N.J.),
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
January 2013, Methods in enzymology,
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
January 2015, Methods in molecular biology (Clifton, N.J.),
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
August 2015, Current protocols in protein science,
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
September 2012, BJU international,
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
January 2004, Methods in molecular biology (Clifton, N.J.),
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
July 2001, Journal of theoretical biology,
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
February 2008, Protein expression and purification,
Chikwado A Opefi, and Dale Tranter, and Steven O Smith, and Philip J Reeves
January 2002, Methods in enzymology,
Copied contents to your clipboard!