Intraneuronal distribution of a synaptic vesicle membrane protein: antibody binding sites at axonal membrane compartments and trans-Golgi network and accumulation at nodes of Ranvier. 1989

A Janetzko, and H Zimmermann, and W Volknandt
AK Neurochemie, Zoologisches Institut der J. W. Goethe-Universität, Frankfurt am Main, F.R.G.

The distribution of a cholinergic synaptic vesicle-specific transmembrane glycoprotein (Buckley and Kelly, 1985, J. Cell Biol. 100, 1284-1294) was investigated in the entire electromotor neuron of Torpedo marmorata using a monoclonal antibody and immunocytochemistry at the light- and electron-microscopical level (immunoperoxidase, colloidal gold). In the nerve, terminal binding of immunogold particles is restricted to synaptic vesicles. In the axon a number of additional membrane compartments like multivesicular bodies, vesiculotubular structures, lamellar bodies and electron-dense granules share the surface located synaptic vesicle-specific transmembrane glycoprotein-epitope. Membranous structures likely to represent the axoplasmic reticulum inside axons and nerve terminals are not labelled. Antibody-binding membrane compartments are accumulated at nodes of Ranvier. In the perikaryon the tubules of the trans-Golgi network as well as multivesicular bodies, lamellar bodies, electron-lucent vesicles, granules with electron-dense core and peroxisomes are labelled. Immunotransfer blots of isolated synaptic vesicles and tissue extracts of electric organ display a 100,000 mol. wt band of broad electrophoretic mobility typical of the synaptic vesicle-specific transmembrane glycoprotein. Extracts of electromotor nerve and electric lobe contain in addition a strong band at 85,000 mol. wt and a few lower molecular weight bands. We suggest that the synaptic vesicle originates directly from the trans-Golgi network. The endoplasmic reticulum is not involved in vesicle formation or retrieval. On retrograde transport the vesicle membrane compartment is likely to fuse with other intra-axonal (endosomal?) organelles.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

A Janetzko, and H Zimmermann, and W Volknandt
June 1999, Molecular biology of the cell,
A Janetzko, and H Zimmermann, and W Volknandt
October 2006, Current opinion in neurobiology,
A Janetzko, and H Zimmermann, and W Volknandt
April 2018, Glia,
A Janetzko, and H Zimmermann, and W Volknandt
June 1991, Journal of neurocytology,
A Janetzko, and H Zimmermann, and W Volknandt
September 2006, Science (New York, N.Y.),
A Janetzko, and H Zimmermann, and W Volknandt
August 1996, Microscopy research and technique,
A Janetzko, and H Zimmermann, and W Volknandt
January 1974, Brain research,
A Janetzko, and H Zimmermann, and W Volknandt
January 2014, Annual review of cell and developmental biology,
A Janetzko, and H Zimmermann, and W Volknandt
January 2005, Biochemical Society symposium,
A Janetzko, and H Zimmermann, and W Volknandt
January 2009, Molecular biology of the cell,
Copied contents to your clipboard!