Medial auditory thalamus is necessary for acquisition and retention of eyeblink conditioning to cochlear nucleus stimulation. 2015

Hunter E Halverson, and Amy Poremba, and John H Freeman
Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA hunter.halverson@utexas.edu.

Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the medial auditory thalamic nuclei (MATN), consisting of the medial division of the medial geniculate, suprageniculate, and posterior interlaminar nucleus have also been implicated as a critical auditory relay to the pontine nuclei for cerebellum-dependent motor learning. The MATN also conveys auditory information to the amygdala necessary for avoidance and fear conditioning. The current study used CN stimulation to increase activity in the pontine nuclei, relative to a tone stimulus, and possibly provide sufficient input to the cerebellum for acquisition or retention of eyeblink conditioning during MATN inactivation. Primary and secondary effects of CN stimulation and MATN inactivation were examined using 2-deoxy-glucose autoradiography. Stimulation of CN increased activity in the pontine nuclei, however, this increase was not sufficient for cerebellar learning during MATN inactivation. Results of the current experiment provide additional evidence indicating the MATN may be the critical auditory relay for many associative learning tasks.

UI MeSH Term Description Entries
D008297 Male Males
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D003215 Conditioning, Eyelid Reflex closure of the eyelid occurring as a result of classical conditioning. Eyelid Conditioning,Conditionings, Eyelid,Eyelid Conditionings
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory
D017626 Cochlear Nucleus The brain stem nucleus that receives the central input from the cochlear nerve. The cochlear nucleus is located lateral and dorsolateral to the inferior cerebellar peduncles and is functionally divided into dorsal and ventral parts. It is tonotopically organized, performs the first stage of central auditory processing, and projects (directly or indirectly) to higher auditory areas including the superior olivary nuclei, the medial geniculi, the inferior colliculi, and the auditory cortex. Cochlear Nuclei,Nuclei, Cochlear,Nucleus, Cochlear
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D058785 GABA-A Receptor Agonists Endogenous compounds and drugs that bind to and activate GABA-A RECEPTORS. GABA-A Agonists,GABA-A Receptor Agonist,Agonist, GABA-A Receptor,Agonists, GABA-A,Agonists, GABA-A Receptor,GABA A Agonists,GABA A Receptor Agonist,GABA A Receptor Agonists,Receptor Agonist, GABA-A,Receptor Agonists, GABA-A

Related Publications

Hunter E Halverson, and Amy Poremba, and John H Freeman
October 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Hunter E Halverson, and Amy Poremba, and John H Freeman
August 2006, Behavioral neuroscience,
Hunter E Halverson, and Amy Poremba, and John H Freeman
January 2010, Neurobiology of learning and memory,
Hunter E Halverson, and Amy Poremba, and John H Freeman
June 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Hunter E Halverson, and Amy Poremba, and John H Freeman
January 2003, Learning & memory (Cold Spring Harbor, N.Y.),
Hunter E Halverson, and Amy Poremba, and John H Freeman
March 2007, Learning & memory (Cold Spring Harbor, N.Y.),
Hunter E Halverson, and Amy Poremba, and John H Freeman
November 2008, Developmental psychobiology,
Hunter E Halverson, and Amy Poremba, and John H Freeman
February 2010, Learning & memory (Cold Spring Harbor, N.Y.),
Hunter E Halverson, and Amy Poremba, and John H Freeman
July 2011, Biological psychology,
Copied contents to your clipboard!