Chryseobacterium solani sp. nov., isolated from field-grown eggplant rhizosphere soil. 2015

Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
College of Life science, Kyung Hee University, , 1 Seocheon, Kihung Yongin, Gyeonggi 446-701, Republic of Korea.

Strain THG-EP9T, a Gram-stain-negative, aerobic, motile, rod-shaped bacterium was isolated from field-grown eggplant (Solanum melongena) rhizosphere soil collected in Pyeongtaek, Gyeonggi-do, Republic of Korea. Based on 16S rRNA gene sequence comparisons, strain THG-EP9T had closest similarity with Chryseobacterium ginsenosidimutans THG 15T (97.3 % 16S rRNA gene sequence similarity), Chryseobacterium soldanellicola PSD1-4T (97.2%), Chryseobacterium zeae JM-1085T (97.2%) and Chryseobacterium indoltheticum LMG 4025T (96.8%). DNA-DNA hybridization showed 5.7% and 9.1% DNA reassociation with Chryseobacterium ginsenosidimutans KACC 14527T and Chryseobacterium soldanellicola KCTC 12382T, respectively. Chemotaxonomic data revealed that strain THG-EP9T possesses menaquinone-6 as the only respiratory quinone and iso-C15 : 0 (29.0%), C16 : 0 (12.5%) and iso-C17 : 0 3-OH (11.9 %) as the major fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, an unidentified aminophospholipid, two unidentified glycolipids, six unidentified aminolipids and two unidentified polar lipids. The DNA G+C content was 35.3 mol%. These data corroborated the affiliation of strain THG-EP9T to the genus Chryseobacterium. Thus, the isolate represents a novel species of this genus, for which the name Chryseobacterium solani sp. nov. is proposed, with THG-EP9T ( = KACC 17652T = JCM 19456T) as the type strain.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012988 Soil Microbiology The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms. Microbiology, Soil
D015373 Bacterial Typing Techniques Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping. Bacteriocin Typing,Biotyping, Bacterial,Typing, Bacterial,Bacterial Biotyping,Bacterial Typing,Bacterial Typing Technic,Bacterial Typing Technics,Bacterial Typing Technique,Technic, Bacterial Typing,Technics, Bacterial Typing,Technique, Bacterial Typing,Techniques, Bacterial Typing,Typing Technic, Bacterial,Typing Technics, Bacterial,Typing Technique, Bacterial,Typing Techniques, Bacterial,Typing, Bacteriocin

Related Publications

Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
November 2015, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
November 2016, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
June 2023, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
March 2014, Antonie van Leeuwenhoek,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
July 2023, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
September 2014, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
May 2022, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
August 2010, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
June 2015, International journal of systematic and evolutionary microbiology,
Juan Du, and Hien T T Ngo, and KyungHwa Won, and Ki-Young Kim, and Feng-Xie Jin, and Tae-Hoo Yi
December 2013, International journal of systematic and evolutionary microbiology,
Copied contents to your clipboard!