Dark-adaptation mechanisms of the long-wave foveal cones. 1989

U Stabell, and B Stabell

The ordinary long-term rod and cone dark-adaptation curves have generally been assumed to follow a single exponential rate of recovery. However, in two previous papers on rod dark-adaptation (Stabell et al., 1986a, b), the recovery curve was found to consist of three different sections. The results of the present paper show the same type of recovery function with three different sections for the long-term dark-adaptation curve of the long-wave cone system. During the major, middle section log cone threshold, like log rod threshold, is linearly related to the logarithm of the concentration of bleached photopigment. Presupposing that the bleached cone photopigment acts as a ligand, the change in threshold level obtained during the middle section of the dark-adaptation curve is well described by the change in activity rate of an allosteric, postively cooperative enzyme built as a dimer.

UI MeSH Term Description Entries
D008297 Male Males
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D005584 Fovea Centralis An area approximately 1.5 millimeters in diameter within the macula lutea where the retina thins out greatly because of the oblique shifting of all layers except the pigment epithelium layer. It includes the sloping walls of the fovea (clivus) and contains a few rods in its periphery. In its center (foveola) are the cones most adapted to yield high visual acuity, each cone being connected to only one ganglion cell. (Cline et al., Dictionary of Visual Science, 4th ed)
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory

Related Publications

U Stabell, and B Stabell
January 1983, Vision research,
U Stabell, and B Stabell
November 1921, The Journal of general physiology,
U Stabell, and B Stabell
February 1968, Nihon ganka kiyo,
U Stabell, and B Stabell
April 1964, Journal of the Optical Society of America,
U Stabell, and B Stabell
January 1976, Journal of the Optical Society of America,
U Stabell, and B Stabell
April 2016, The Journal of physiology,
U Stabell, and B Stabell
January 1992, Visual neuroscience,
U Stabell, and B Stabell
October 1960, Journal of the Optical Society of America,
U Stabell, and B Stabell
January 1961, Bulletin de la Societe belge d'ophtalmologie,
U Stabell, and B Stabell
January 1984, Vision research,
Copied contents to your clipboard!