An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. 2015

Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.

In this work, a sensitive exonuclease-assisted amplification electrochemical aptasensor through insertion approach was developed for the detection of mucin 1 (MUC 1). In order to construct the aptasensor, 6-Mercapto-1-hexanol (MCH) was used to block partial sites of gold electrode (GE), followed by thiolated capture probe self-assembled on GE. Methylene blue (MB) labeled aptamer hybridized with capture probe at both ends to form double-strand DNA. For the MB labeled termini was close to GE, the electrochemical response was remarkable. The presence of MUC 1 caused the dissociation of the double-strand DNA owing to the specific recognition of aptamer to MUC 1. Then exonuclease I (Exo I) selectively digested the aptamer which bound with MUC 1, the released MUC 1 participated new binding with the rest aptamer. Insertion approach improved the reproducibility and Exo I-catalyzed target recycling improved the sensitivity of the aptasensor significantly. Under optimal experimental conditions, the proposed aptasensor had a good linear correlation ranged from 10 pM to 1 μM with a detection limit of 4 pM (Signal to Noise ratio, S/N=3). The strategy had great potential for the simple and sensitive detection of other cancer markers.

UI MeSH Term Description Entries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D052157 Aptamers, Nucleotide Nucleotide sequences, generated by iterative rounds of SELEX APTAMER TECHNIQUE, that bind to a target molecule specifically and with high affinity. DNA Aptamer,DNA Aptamers,RNA Aptamers,Rna Aptamer,Nucleotide Aptamers,Oligonucleotide Ligands, DNA,Oligonucleotide Ligands, RNA,Aptamer, DNA,Aptamer, Rna,Aptamers, DNA,Aptamers, RNA,DNA Oligonucleotide Ligands,RNA Oligonucleotide Ligands
D055664 Electrochemical Techniques The utilization of an electrical current to measure, analyze, or alter chemicals or chemical reactions in solution, cells, or tissues. Electrochemical Technics,Electrochemical Technic,Electrochemical Technique,Technic, Electrochemical,Technics, Electrochemical,Technique, Electrochemical,Techniques, Electrochemical
D057230 Limit of Detection Concentration or quantity that is derived from the smallest measure that can be detected with reasonable certainty for a given analytical procedure. Limits of Detection,Detection Limit,Detection Limits

Related Publications

Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
October 2018, Biosensors & bioelectronics,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
December 2023, Analytical methods : advancing methods and applications,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
December 2019, Analytica chimica acta,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
December 2022, Analytical methods : advancing methods and applications,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
May 2018, Food chemistry,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
September 2013, Biosensors & bioelectronics,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
August 2023, Analytical and bioanalytical chemistry,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
November 2011, Biosensors & bioelectronics,
Wei Wen, and Rong Hu, and Ting Bao, and Xiuhua Zhang, and Shengfu Wang
November 2018, The Analyst,
Copied contents to your clipboard!