Effects of dipyridamole on muscle blood flow in exercising miniature swine. 1989

M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
Department of Veterinary Biomedical Sciences, University of Missouri, Columbia 65211.

The purpose of this study was to determine whether a vasodilator reserve exists in respiratory muscles and forelimb skeletal muscles in miniature swine during treadmill exercise. Blood flow (BF) was measured with radiolabeled microspheres during preexercise and before and after dipyridamole (DYP; 1 mg/kg iv) at 2 min of treadmill exercise at 11.2 (70% Vo2 max) and 17.6 km/h (Vo2 max). Muscle BFs were increased during exercise, and the relationship between exercise intensity and BF varied among the muscles. The high-oxidative extensor muscles and the flexor muscles attained peak BFs at 11.2 km/h, whereas the more superficial, lower oxidative extensor muscles showed increases in BF up to maximal exercise. During running at 11.2 km/h, DYP produced increases in BF only in cardiac muscle, respiratory muscle and the medial head of the triceps muscle (MHT), which is composed of 91% slow-twitch oxidative (SO) fibers. During maximal exercise (17.6 km/h), DYP produced a 31-mmHg decrease in mean arterial pressure (MAP) and increases in vascular conductance in all muscles studied. BF was only increased in MHT and cardiac muscle. We conclude that vasodilator reserve remains in skeletal muscle and respiratory muscle even during maximal exercise in swine. If it is assumed that DYP-induced vasodilation in a muscle sample is indicative of adenosine production, these results suggest that SO skeletal muscle (MHT) and respiratory muscle are similar to cardiac muscle in that they produce adenosine even when adequately perfused. Furthermore, during maximal exercise, all skeletal muscle appears to produce adenosine, suggesting that muscle BF is restricted under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013556 Swine, Miniature Genetically developed small pigs for use in biomedical research. There are several strains - Yucatan miniature, Sinclair miniature, and Minnesota miniature. Miniature Swine,Minipigs,Miniature Swines,Minipig,Swines, Miniature

Related Publications

M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
March 1991, Journal of applied physiology (Bethesda, Md. : 1985),
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
May 1989, Journal of applied physiology (Bethesda, Md. : 1985),
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
May 1978, The American journal of physiology,
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
March 1989, Aviation, space, and environmental medicine,
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
October 1988, Medicine and science in sports and exercise,
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
November 2010, Journal of applied physiology (Bethesda, Md. : 1985),
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
February 1977, Atherosclerosis,
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
March 1987, Journal of applied physiology (Bethesda, Md. : 1985),
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
July 1992, Journal of applied physiology (Bethesda, Md. : 1985),
M H Laughlin, and R E Klabunde, and M D Delp, and R B Armstrong
September 1985, Respiration physiology,
Copied contents to your clipboard!