Conduction along myelinated and demyelinated nerve fibres during the recovery cycle: model investigations. 1989

D I Stephanova
Central Laboratory of Biophysics, Bulgarian Academy of Sciences, Sofia.

The membrane excitability changes as well as the underlying mechanisms of these changes in a normal and in a systematically paranodally demyelinated nerve fibre have been investigated by paired stimulation during the first 30 ms of the recovery cycle. The ionic current kinetics determining the observed changes in the action potential parameters are presented also. The simulation of the conduction in the normal fibre is based on the Frankenhaeuser and Huxley (1964) and Goldman and Albus (1968) equations, while in the case of a demyelinated fibre according to the same equations modified by Stephanova (1988a). It has been shown for the demyelinated membrane that increased demyelination increases both the threshold current for the second potential as well as the absolute refractory period. With increasing interpulse interval, the subnormality of the membrane excitability is followed by supernormality in the case of the demyelinated membrane. For the recovery cycle of 30 ms under consideration no supernormality of the normal membrane excitability is obtained. With interpulse interval from 8.8 to 10.9 ms, the highest degree of demyelination (l = 30 microns) is accompanied by a refractory period of transmission. The membrane properties of the normal and demyelinated fibres recover 20 ms after the first pulse. For short interpulse intervals, the amplitude of the second action potential is decreased, and a slower propagation velocity is obtained. The most sensitive phenomenon is the excitability of the demyelinated membrane, which remains unrecovered 30 ms after the first pulses has been applied.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D I Stephanova
December 1972, The Journal of physiology,
D I Stephanova
September 1952, The Journal of physiology,
D I Stephanova
December 1972, The Journal of physiology,
D I Stephanova
January 1971, The Journal of physiology,
D I Stephanova
October 1977, Archives of neurology,
D I Stephanova
July 1977, The Journal of physiology,
D I Stephanova
May 1949, The Journal of physiology,
D I Stephanova
June 1970, The Journal of physiology,
D I Stephanova
May 1949, The Journal of physiology,
Copied contents to your clipboard!