Calbindin-D28K is increased in the ventral horn of spinal cord by neuroprotective factors for motor neurons. 2015

Maria M Spruill, and Ralph W Kuncl
Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Slow glutamate-mediated neuronal degeneration is implicated in the pathophysiology of motor neuron diseases such as amyotrophic lateral sclerosis (ALS). The calcium-binding proteins calbindin-D28K and parvalbumin have been reported to protect neurons against excitotoxic insults. Expression of calbindin-D28K is low in adult human motor neurons, and vulnerable motor neurons additionally may lack parvalbumin. Thus, it has been speculated that the lack of calcium-binding proteins may, in part, be responsible for early degeneration of the population of motor neurons most vulnerable in ALS. Using a rat organotypic spinal cord slice system, we examined whether the most potent neuroprotective factors for motor neurons can increase the expression of calbindin-D28K or parvalbumin proteins in the postnatal spinal cord. After 4 weeks of incubation of spinal cord slices with 1) glial cell line-derived neurotrophic factor (GDNF), 2) neurturin, 3) insulin-like growth factor I (IGF-I), or 4) pigment epithelium-derived factor (PEDF), the number of calbindin-D28K -immunopositive large neurons (>20 μm) in the ventral horn was higher under the first three conditions, but not after PEDF, compared with untreated controls. Under the same conditions, parvalbumin was not upregulated by any neuroprotective factor. The same calbindin increase was true of IGF-I and GDNF in a parallel glutamate toxicity model of motor neuron degeneration. Taken together with our previous reports from the same model, which showed that all these neurotrophic factors can potently protect motor neurons from slow glutamate injury, the data here suggest that upregulation of calbindin-D28K by some of these factors may be one mechanism by which motor neurons can be protected from glutamate-induced, calcium-mediated excitotoxicity.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective
D064092 Calbindin 1 A calcium-binding protein that mediates calcium HOMEOSTASIS in KIDNEYS, BRAIN, and other tissues. It is found in well-defined populations of NEURONS and is involved in CALCIUM SIGNALING and NEURONAL PLASTICITY. It is regulated in some tissues by VITAMIN D. Calbindin D(28)K,Calbindin D28K,Calbindin-D28K
D066151 Spinal Cord Ventral Horn One of three central columns of the spinal cord. It is composed of GRAY MATTER spinal laminae VIII and IX. Cervical Spinal Cord Ventral Horn,Cornu Anterius,Lamina IX,Lamina VIII,Spinal Cord Anterior Horn,Anterius, Cornu

Related Publications

Maria M Spruill, and Ralph W Kuncl
January 2018, Developmental dynamics : an official publication of the American Association of Anatomists,
Maria M Spruill, and Ralph W Kuncl
January 2014, Morfologiia (Saint Petersburg, Russia),
Maria M Spruill, and Ralph W Kuncl
March 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Maria M Spruill, and Ralph W Kuncl
July 1993, The European journal of neuroscience,
Maria M Spruill, and Ralph W Kuncl
January 1997, Acta anatomica,
Maria M Spruill, and Ralph W Kuncl
November 1997, Experimental neurology,
Maria M Spruill, and Ralph W Kuncl
March 2004, Neuroreport,
Maria M Spruill, and Ralph W Kuncl
February 2002, The journal of medical investigation : JMI,
Copied contents to your clipboard!