IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: Role of epigenetic regulation. 2015

Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
Department of Pediatrics, University of Illinois College of Medicine, Chicago, IL, United States. Electronic address: qiwei@uic.edu.

Pulmonary hypertension is a fatal disease characterized by a progressive increase in pulmonary artery pressure accompanied by pulmonary vascular remodeling and increased vasomotor tone. Although some biological pathways have been identified in neonatal hypoxia-induced pulmonary hypertension (PH), little is known regarding the role of growth factors in the pathogenesis of PH in neonates. In this study, using a model of hypoxia-induced PH in neonatal mice, we demonstrate that the growth factor insulin-like growth factor-1 (IGF-1), a potent activator of the AKT signaling pathway, is involved in neonatal PH. After exposure to hypoxia, IGF-1 signaling is activated in pulmonary endothelial and smooth muscle cells in vitro, and the IGF-1 downstream signal pAKT(S473) is upregulated in lungs of neonatal mice. We found that IGF-1 regulates ET-1 expression in pulmonary endothelial cells and that IGF-1 expression is regulated by histone deacetylases (HDACs). In addition, there is a differential cytosine methylation site in the IGF-1 promoter region in response to neonatal hypoxia. Moreover, inhibition of HDACs with apicidin decreases neonatal hypoxia-induced global DNA methylation levels in lungs and specific cytosine methylation levels around the pulmonary IGF-1 promoter region. Finally, HDAC inhibition with apicidin reduces chronic hypoxia-induced activation of IGF-1/pAKT signaling in lungs and attenuates right ventricular hypertrophy and pulmonary vascular remodeling. Taken together, we conclude that IGF-1, which is epigenetically regulated, is involved in the pathogenesis of pulmonary hypertension in neonatal mice. This study implicates a novel HDAC/IGF-1 epigenetic pathway in the regulation of hypoxia-induced PH and warrants further study of the role of IGF-1 in neonatal pulmonary hypertensive disease.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone

Related Publications

Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
January 2023, Frontiers in immunology,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
October 2020, Antioxidants (Basel, Switzerland),
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
June 2009, Circulation research,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
August 2011, Journal of molecular endocrinology,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
October 2015, Vascular pharmacology,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
September 2021, The Journal of clinical investigation,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
September 2011, Hypertension research : official journal of the Japanese Society of Hypertension,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
April 2021, Respiratory research,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
August 2021, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Qiwei Yang, and Miranda Sun, and Ramaswamy Ramchandran, and J Usha Raj
September 2016, Sleep & breathing = Schlaf & Atmung,
Copied contents to your clipboard!