Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. 2015

Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown.

OBJECTIVE The blood-brain barrier (BBB) is a selectively permeable cerebrovascular endothelial barrier that maintains homeostasis between the periphery and the central nervous system. BBB disruption is a consequence of ischemic stroke and BBB permeability can be altered by infection/inflammation, but the complex cellular and molecular changes that result in this BBB alteration need to be elucidated to determine mechanisms. METHODS Infection mimic (lipopolysaccharide) challenge on infarct volume, BBB permeability, infiltrated neutrophils, and functional outcomes after murine transient middle cerebral artery occlusion in vivo; mitochondrial evaluation of cerebrovascular endothelial cells challenged by lipopolysaccharide in vitro; pharmacological inhibition of mitochondria on BBB permeability in vitro and in vivo; the effects of mitochondrial inhibitor on BBB permeability, infarct volume, and functional outcomes after transient middle cerebral artery occlusion. RESULTS We report here that lipopolysaccharide worsens ischemic stroke outcome and increases BBB permeability after transient middle cerebral artery occlusion in mice. Furthermore, we elucidate a novel mechanism that compromised mitochondrial function accounts for increased BBB permeability as evidenced by: lipopolysaccharide-induced reductions in oxidative phosphorylation and subunit expression of respiratory chain complexes in cerebrovascular endothelial cells, a compromised BBB permeability induced by pharmacological inhibition of mitochondrial function in cerebrovascular endothelial cells in vitro and in an in vivo animal model, and worsened stroke outcomes in transient middle cerebral artery occlusion mice after inhibition of mitochondrial function. CONCLUSIONS We concluded that mitochondria are key players in BBB permeability. These novel findings suggest a potential new therapeutic strategy for ischemic stroke by endothelial cell mitochondrial regulation.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
September 2015, Journal of neurochemistry,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
September 1971, Zeitschrift fur Allgemeinmedizin,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
March 2023, Mitochondrion,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
June 1991, Brain research,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
March 1998, Pathologie-biologie,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
February 2016, BMJ (Clinical research ed.),
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
January 2023, Frontiers in neuroscience,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
March 2018, Current opinion in biomedical engineering,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
June 2024, Neurochemical research,
Danielle N Doll, and Heng Hu, and Jiahong Sun, and Sara E Lewis, and James W Simpkins, and Xuefang Ren
January 2020, Current neuropharmacology,
Copied contents to your clipboard!