Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: A study in rat. 2015

Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri.

Profound inhibitory control exerted on midbrain dopaminergic neurons by the lateral habenula (LHb), which has mainly excitatory outputs, is mediated by the GABAergic rostromedial tegmental nucleus (RMTg), which strongly innervates dopaminergic neurons in the ventral midbrain. Early reports indicated that the afferent connections of the RMTg, excepting its very strong LHb inputs, do not differ appreciably from those of the ventral tegmental area (VTA). Presumably, however, the RMTg contributes more to behavioral synthesis than to simply invert the valence of the excitatory signal coming from the LHb. Therefore, the present study was done to directly compare the inputs to the RMTg and VTA and, in deference to its substantial involvement with this circuitry, the LHb was also included in the comparison. Data indicated that, while the afferents of the RMTg, VTA, and LHb do originate within the same large pool of central nervous system (CNS) structures, each is also related to structures that project more strongly to it than to the others. The VTA gets robust input from ventral striatopallidum and extended amygdala, whereas RMTg biased inputs arise in structures with a more direct impact on motor function, such as deep layers of the contralateral superior colliculus, deep cerebellar and several brainstem nuclei, and, via a relay in the LHb, the entopeduncular nucleus. Input from the ventral pallidal-lateral preoptic-lateral hypothalamus continuum is strong in the RMTg and VTA and dominant in the LHb. Axon collateralization was also investigated, providing additional insights into the organization of the circuitry of this important triad of structures.

UI MeSH Term Description Entries
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010784 Photomicrography Photography of objects viewed under a microscope using ordinary photographic methods. Photomicrographies
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013681 Tegmentum Mesencephali Portion of midbrain situated under the dorsal TECTUM MESENCEPHALI. The two ventrolateral cylindrical masses or peduncles are large nerve fiber bundles providing a tract of passage between the FOREBRAIN with the HINDBRAIN. Ventral MIDBRAIN also contains three colorful structures: the GRAY MATTER (PERIAQUEDUCTAL GRAY), the black substance (SUBSTANTIA NIGRA), and the RED NUCLEUS. Accessory Oculomotor Nuclei,Annular Nucleus,Darkshevich's Nucleus,Interstitial Nucleus of Cajal,Mesencephalic Tegmentum,Mesencephalic Trigeminal Nucleus,Midbrain Tegmentum,Midbrain Trigeminal Nucleus,Nucleus Annularis,Nucleus Nervi Trochlearis,Nucleus Sagulum,Nucleus Tractus Mesencephalici Nervi Trigemini,Nucleus of Darkschewitsch,Peripeduncular Nucleus,Sagulum Nucleus,Tegmentum of Midbrain,Trochlear Nucleus,Ventral Tegmental Nucleus,Annulari, Nucleus,Annularis, Nucleus,Cajal Interstitial Nucleus,Darkschewitsch Nucleus,Darkshevich Nucleus,Darkshevichs Nucleus,Mesencephali, Tegmentum,Mesencephalic Tegmentums,Mesencephalus, Tegmentum,Midbrain Tegmentums,Nervi Trochleari, Nucleus,Nervi Trochlearis, Nucleus,Nuclei, Accessory Oculomotor,Nucleus Annulari,Nucleus Nervi Trochleari,Nucleus Sagulums,Nucleus, Annular,Nucleus, Darkshevich's,Nucleus, Mesencephalic Trigeminal,Nucleus, Midbrain Trigeminal,Nucleus, Peripeduncular,Nucleus, Sagulum,Nucleus, Trochlear,Nucleus, Ventral Tegmental,Oculomotor Nuclei, Accessory,Sagulum, Nucleus,Sagulums, Nucleus,Tegmental Nucleus, Ventral,Tegmentum Mesencephalus,Tegmentum, Mesencephalic,Tegmentum, Midbrain,Tegmentums, Mesencephalic,Tegmentums, Midbrain,Trigeminal Nucleus, Mesencephalic,Trigeminal Nucleus, Midbrain,Trochleari, Nucleus Nervi,Trochlearis, Nucleus Nervi
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D056347 Neuroanatomical Tract-Tracing Techniques Methods used to label and follow the course of NEURAL PATHWAYS by AXONAL TRANSPORT of injected NEURONAL TRACT-TRACERS. Neuroanatomical Tract-Tracing,Neuron Pathway Tracing,Neuronal Pathway Tracing,Neuroanatomical Tract Tracing,Neuroanatomical Tract Tracing Techniques,Neuroanatomical Tract-Tracing Technique,Neuroanatomical Tract-Tracings,Neuron Pathway Tracings,Neuronal Pathway Tracings,Pathway Tracing, Neuronal,Pathway Tracings, Neuronal,Technique, Neuroanatomical Tract-Tracing,Techniques, Neuroanatomical Tract-Tracing,Tracing, Neuronal Pathway,Tracings, Neuronal Pathway,Tract-Tracing Technique, Neuroanatomical,Tract-Tracing Techniques, Neuroanatomical,Tract-Tracing, Neuroanatomical,Tract-Tracings, Neuroanatomical
D019262 Habenula A small protuberance at the dorsal, posterior corner of the wall of the THIRD VENTRICLE, adjacent to the dorsal THALAMUS and PINEAL BODY. It contains the habenular nuclei and is a major part of the epithalamus. Commissura Habenularum,Habenula Complex,Habenular Commissure,Habenular Nuclei,Habenular Nucleus,Nucleus Habenularis,Commissura Habenularums,Commissure, Habenular,Commissures, Habenular,Complex, Habenula,Complices, Habenula,Habenula Complices,Habenular Commissures,Habenulari, Nucleus,Habenularis, Nucleus,Habenularum, Commissura,Habenularums, Commissura,Habenulas,Nuclei, Habenular,Nucleus Habenulari,Nucleus, Habenular

Related Publications

Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
April 2012, The Journal of comparative neurology,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
November 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
April 2009, The Journal of comparative neurology,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
May 2014, The Journal of comparative neurology,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
October 2009, The European journal of neuroscience,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
July 2017, The Journal of comparative neurology,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
April 2024, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
September 2013, The European journal of neuroscience,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
August 2019, Neuropharmacology,
Leora Yetnikoff, and Anita Y Cheng, and Heather N Lavezzi, and Kenneth P Parsley, and Daniel S Zahm
June 2023, Behavioural pharmacology,
Copied contents to your clipboard!