Zinc inhibition of glucose uptake in brush border membrane vesicles from pig small intestine. 1989

D W Watkins, and C Chenu, and P Ripoche
Department of Physiology, George Washington University School of Medicine, Washington, DC 20037.

The effect of zinc on sodium coupled glucose uptake was studied in pig intestinal brush border membrane vesicles. In this system zinc inhibited glucose uptake and appeared to have a Ki of 0.25 mM. When tested by spectrophotometry, electron microscopy and protein determination following centrifugation, no evidence of significant vesicle aggregation was found with 0.5 mM zinc treatment. Zinc inhibition of glucose uptake persisted when the vesicle membrane potential was clamped with identical KCl concentrations inside and outside the vesicles in the presence of valinomycin. Variation of the glucose and sodium concentrations gave results indicating that zinc reduces glucose affinity for the carrier but not sodium binding to the transporter. The glucose inhibitory effect was not due to a rapid dissipation of the sodium gradient as zinc failed to affect sodium uptake in the absence of glucose. Zinc also failed to inhibit glucose efflux from vesicles under isotopic exchange conditions, when glucose and sodium concentrations were identical inside and outside vesicles. The t1/2 of glucose inhibition by zinc was relatively long, i.e. 6 min. We conclude that zinc acts as an inhibitor of glucose transport by interacting with the sodium-glucose co-transporter. The long zinc incubation time required to achieve maximal inhibition of glucose transport suggests that this interaction takes place within vesicles.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

D W Watkins, and C Chenu, and P Ripoche
June 1993, The Journal of physiology,
D W Watkins, and C Chenu, and P Ripoche
May 1990, Biochimica et biophysica acta,
D W Watkins, and C Chenu, and P Ripoche
January 1987, Comparative biochemistry and physiology. A, Comparative physiology,
D W Watkins, and C Chenu, and P Ripoche
June 1997, Biological & pharmaceutical bulletin,
D W Watkins, and C Chenu, and P Ripoche
January 1976, Biochemical and biophysical research communications,
D W Watkins, and C Chenu, and P Ripoche
July 1983, The Journal of nutrition,
D W Watkins, and C Chenu, and P Ripoche
May 1981, The Biochemical journal,
D W Watkins, and C Chenu, and P Ripoche
September 1989, The American journal of physiology,
D W Watkins, and C Chenu, and P Ripoche
January 1989, Gastroenterology,
D W Watkins, and C Chenu, and P Ripoche
April 1999, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!