| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D009132 |
Muscles |
Contractile tissue that produces movement in animals. |
Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle |
|
| D011978 |
Receptors, Nicotinic |
One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. |
Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine |
|
| D000081007 |
Cymenes |
A subclass of monoterpenes that contain a single benzene ring structure with an isopropyl group and one or more methyl groups. |
Benzenoid Menthane,Benzenoid Menthanes,Cymene,Menthane, Benzenoid,Menthanes, Benzenoid |
|
| D000109 |
Acetylcholine |
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. |
2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D000969 |
Antinematodal Agents |
Substances used in the treatment or control of nematode infestations. They are used also in veterinary practice. |
Nematocides,Antinematodal Drugs,Antinematodals,Agents, Antinematodal,Drugs, Antinematodal |
|
| D017165 |
Ascaris suum |
A species of parasitic nematode usually found in domestic pigs and a few other animals. Human infection can also occur, presumably as result of handling pig manure, and can lead to intestinal obstruction. |
Ascaris suums,suum, Ascaris |
|
| D018079 |
Receptors, GABA |
Cell-surface proteins that bind GAMMA-AMINOBUTYRIC ACID with high affinity and trigger changes that influence the behavior of cells. GABA-A receptors control chloride channels formed by the receptor complex itself. They are blocked by bicuculline and usually have modulatory sites sensitive to benzodiazepines and barbiturates. GABA-B receptors act through G-proteins on several effector systems, are insensitive to bicuculline, and have a high affinity for L-baclofen. |
GABA Receptors,Receptors, gamma-Aminobutyric Acid,gamma-Aminobutyric Acid Receptors,GABA Receptor,gamma-Aminobutyric Acid Receptor,Receptor, GABA,Receptor, gamma-Aminobutyric Acid,Receptors, gamma Aminobutyric Acid,gamma Aminobutyric Acid Receptor,gamma Aminobutyric Acid Receptors |
|
| D039821 |
Monoterpenes |
Compounds with a core of 10 carbons generally formed via the mevalonate pathway from the combination of 3,3-dimethylallyl pyrophosphate and isopentenyl pyrophosphate. They are cyclized and oxidized in a variety of ways. Due to the low molecular weight many of them exist in the form of essential oils (OILS, VOLATILE). |
Monoterpene,Monoterpenoid,Monoterpenoids |
|