Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny. 2015

Junxia Zhang, and Wayne P Maddison
Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada. Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.; Email: jxzhang1976@gmail.com.

Morphological traits of euophryine jumping spiders were studied to clarify generic limits in the Euophryinae and to permit phylogenetic classification of genera lacking molecular data. One hundred and eight genera are recognized within the subfamily. Euophryine generic groups and the delimitation of some genera are reviewed in detail. In order to explore the effect of adding formal morphological data to previous molecular phylogenetic studies, and to find morphological synapomorphies, eighty-two morphological characters were scored for 203 euophryine species and seven outgroup species. The morphological dataset does not perform as well as the molecular dataset (genes 28S, Actin 5C; 16S-ND1, COI) in resolving the phylogeny of Euophryinae, probably because of frequent convergence and reversal. The formal morphological data were mapped on the phylogeny in order to seek synapomorphies, in hopes of extending the phylogeny to include taxa for which molecular data are not available. Because of homoplasy, few globally-applicable morphological synapomorphies for euophryine clades were found. However, synapomorphies that are unique locally in subclades still help to delimit euophryine generic groups and genera. The following synonyms of euophryine genera are proposed: Maeotella with Anasaitis; Dinattus with Corythalia; Paradecta with Compsodecta; Cobanus, Chloridusa and Wallaba with Sidusa; Tariona with Mopiopia; Nebridia with Amphidraus; Asaphobelis and Siloca with Coryphasia; Ocnotelus with Semnolius; Palpelius with Pristobaeus; Junxattus with Laufeia; Donoessus with Colyttus; Nicylla, Pselcis and Thianitara with Thiania. The new genus Saphrys is erected for misplaced species from southern South America.

UI MeSH Term Description Entries
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000825 Animal Structures Organs and other anatomical structures of non-human vertebrate and invertebrate animals. Animal Organs,Animal Organ,Animal Structure,Organ, Animal,Organs, Animal,Structure, Animal,Structures, Animal
D013020 South America The southern continent of the Western Hemisphere, extending southward from the Colombia-Panama border.
D013112 Spiders Arthropods of the class ARACHNIDA, order Araneae. Except for mites and ticks, spiders constitute the largest order of arachnids, with approximately 37,000 species having been described. The majority of spiders are harmless, although some species can be regarded as moderately harmful since their bites can lead to quite severe local symptoms. (From Barnes, Invertebrate Zoology, 5th ed, p508; Smith, Insects and Other Arthropods of Medical Importance, 1973, pp424-430) Spider
D017753 Ecosystem A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Ecosystems,Biome,Ecologic System,Ecologic Systems,Ecological System,Habitat,Niche, Ecological,System, Ecological,Systems, Ecological,Biomes,Ecological Niche,Ecological Systems,Habitats,System, Ecologic,Systems, Ecologic
D049628 Body Size The physical measurements of a body. Body Sizes,Size, Body,Sizes, Body

Related Publications

Junxia Zhang, and Wayne P Maddison
February 2018, BMC evolutionary biology,
Junxia Zhang, and Wayne P Maddison
May 2024, Molecular phylogenetics and evolution,
Junxia Zhang, and Wayne P Maddison
January 2013, Zootaxa,
Junxia Zhang, and Wayne P Maddison
January 1989, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
Junxia Zhang, and Wayne P Maddison
March 2001, Molecular phylogenetics and evolution,
Junxia Zhang, and Wayne P Maddison
January 2016, ZooKeys,
Copied contents to your clipboard!