Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats. 2015

Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China.

The mechanisms associated with diabetes-induced neuropathic pain are complex and poorly understood. In order to understand the involvement of spinal microglia activity in diabetic pain, the present study investigated whether minocycline treatment is able to attenuate diabetic pain using a rat model. Diabetes was induced using a single intraperitoneal injection of streptozotocin (STZ). Minocycline was then intrathecally administered to the rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were tested weekly. The expression of OX-42, Iba-1, phospho-p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS), were examined in the spinal cord in order to evaluate the activation of microglia. The present study demonstrated that rats with STZ-induced diabetes exhibited increased mean plasma glucose concentration, decreased mean body weight and significant pain hypersensitivity compared with control rats. PWT and PWL values of rats with STZ-induced diabetes increased following treatment with minocycline. No differences were observed in expression levels of the microglial activity markers (OX-42, Iba-1 and phospho-p38 MAPK) between rats with STZ-induced diabetes and control rats. However, TNF-α, IL-1β and iNOS expression levels were higher in rats with STZ-induced diabetes compared with control rats. Following treatment with minocycline markers of microglial activation, including cytokines and iNOS, were downregulated in rats with STZ-induced diabetes. The results of the present study indicated that minocycline treatment may inhibit spinal microglial activation and attenuate diabetic pain in rats with STZ-induced diabetes.

UI MeSH Term Description Entries
D008297 Male Males
D008911 Minocycline A TETRACYCLINE analog, having a 7-dimethylamino and lacking the 5 methyl and hydroxyl groups, which is effective against tetracycline-resistant STAPHYLOCOCCUS infections. Akamin,Akne-Puren,Aknemin,Aknin-Mino,Aknosan,Apo-Minocycline,Arestin,Blemix,Cyclomin,Cyclops,Dentomycin,Dynacin,Icht-Oral,Klinomycin,Lederderm,Mestacine,Minakne,Mino-Wolff,Minocin,Minocin MR,Minoclir,Minocycline Hydrochloride,Minocycline Monohydrochloride,Minocycline, (4R-(4 alpha,4a beta,5a beta,12a beta))-Isomer,Minolis,Minomycin,Minoplus,Minotab,Minox 50,Mynocine,Akne Puren,Aknin Mino,Apo Minocycline,Hydrochloride, Minocycline,Icht Oral,Mino Wolff,Monohydrochloride, Minocycline
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013131 Spine The spinal or vertebral column. Spinal Column,Vertebrae,Vertebral Column,Vertebra,Column, Spinal,Column, Vertebral,Columns, Spinal,Columns, Vertebral,Spinal Columns,Vertebral Columns
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
June 2016, Acta pharmacologica Sinica,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
September 2016, Journal of cellular and molecular medicine,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
November 2005, The European journal of neuroscience,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
May 2021, Neurochemical research,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
December 2019, Anesthesia and analgesia,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
October 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
December 2010, Journal of the American Society of Nephrology : JASN,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
June 2018, Journal of neuroinflammation,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
January 2019, Ocular immunology and inflammation,
Jin-Shan Sun, and Yu-Jie Yang, and Yong-Zhen Zhang, and Wen Huang, and Zhao-Shen Li, and Yong Zhang
May 2022, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
Copied contents to your clipboard!