Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. 2015

Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China;

The M1 and M2 polarized phenotypes dictate distinctive roles for macrophages as they participate in inflammatory disorders. There has been growing interest in the role of cellular metabolism in macrophage polarization. However, it is currently unclear whether different aspects of a specific metabolic program coordinately regulate this cellular process. In this study, we found that pyruvate dehydrogenase kinase 1 (PDK1), a key regulatory enzyme in glucose metabolism, plays an important role in the differential activation of macrophages. Knockdown of PDK1 diminished M1, whereas it enhanced M2 activation of macrophages. Mechanistically, PDK1 knockdown led to diminished aerobic glycolysis in M1 macrophages, which likely accounts for the attenuated inflammatory response in these cells. Furthermore, we found that mitochondrial respiration is enhanced during and required by the early activation of M2 macrophages. Suppression of glucose oxidation, but not that of fatty acids, inhibits this process. Consistent with its inhibitory role in early M2 activation, knockdown of PDK1 enhanced mitochondrial respiration in macrophages. Our data suggest that two arms of the glucose metabolism synergistically regulate the differential activation of macrophages. Our findings also highlight the central role of PDK1 in this event via controlling glycolysis and glucose oxidation.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D000081382 Pyruvate Dehydrogenase Acetyl-Transferring Kinase A pyruvate dehydrogenase kinase isozyme located in the mitochondria which converts PYRUVATE to ACETYL CoA in the CITRIC ACID CYCLE, phosphorylates SERINE residues on pyruvate dehydrogenase using ATP, and plays a key role in the regulation of GLUCOSE and fatty acid metabolism. PDH Kinase,Pyruvate Dehydrogenase (Acetyl-Transferring) Kinase,Pyruvate Dehydrogenase (Lipoamide) Kinase,Pyruvate Dehydrogenase Kinase,Dehydrogenase Kinase, Pyruvate,Kinase, PDH,Kinase, Pyruvate Dehydrogenase,Pyruvate Dehydrogenase Acetyl Transferring Kinase

Related Publications

Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
January 2023, Frontiers in immunology,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
June 2012, Cell metabolism,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
January 2017, Frontiers in molecular neuroscience,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
January 2022, Oxidative medicine and cellular longevity,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
December 2021, Molecular therapy. Nucleic acids,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
June 2020, Zhonghua wei zhong bing ji jiu yi xue,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
December 2017, Bioscience reports,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
January 2020, Journal of Cancer,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
August 2021, International journal of oral science,
Zheng Tan, and Na Xie, and Huachun Cui, and Douglas R Moellering, and Edward Abraham, and Victor J Thannickal, and Gang Liu
October 2020, Journal of clinical medicine,
Copied contents to your clipboard!