Tryptophan environments in glutathione transferase of human placenta from temperature-dependent phosphorescence studies. 1989

A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
Istituto di Scienze Biochimiche, Facolta' di Medicina, Università degli Studi G. D'Annunzio, Chieti, Italy.

An investigation of the tryptophan emission properties of glutathione transferase from human placenta was conducted in order to characterize the environments of the two aromatic residues. The low-temperature phosphorescence spectra and temperature dependence of the phosphorescence quantum yield of the tryptophan residues revealed a difference in the chemical nature and dynamical structure of the surrounding protein matrix. Thus, one tryptophan residue seems to be deeply embedded within the polypeptide in a rigid weakly polar environment, characteristic of a beta-type secondary structure. The other is located in a more polar site, probably near the surface, in a rather flexible region of the macromolecule. At high temperature, the heterogeneity in the triplet lifetime of the internal residue attests to the presence of multiple conformers which are not in rapid equilibrium in the phosphorescence time scale. The anisotropy of the phosphorescence emission of glutathione transferase indicates that no energy transfer occurs between the two residues, and measurement of the rotational correlation time yields an hydrodynamic volume which is in good agreement with the molecular weight reported in the literature for the dimer.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005260 Female Females
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
August 1987, Biochemistry,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
January 1981, Methods in enzymology,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
January 1979, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
May 1990, Journal of molecular biology,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
June 1980, Biochemical pharmacology,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
November 1991, The Journal of biological chemistry,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
October 1981, Biochimica et biophysica acta,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
January 1986, Placenta,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
December 1981, FEBS letters,
A Arduini, and G Strambini, and C Di Ilio, and A Aceto, and S Storto, and G Federici
June 1981, Biochemical medicine,
Copied contents to your clipboard!