Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks. 2015

Arvind Panday, and LiJuan Xiao, and Anne Grove
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB protein HMO1 stabilizes chromatin as evidenced by faster chromatin remodeling in its absence. HMO1 was evicted along with core histones during repair of DSBs, and chromatin remodeling events such as histone H2A phosphorylation and H3 eviction were faster in absence of HMO1. The facilitated chromatin remodeling in turn correlated with more efficient DNA resection and recruitment of repair proteins; for example, inward translocation of the DNA-end-binding protein Ku was faster in absence of HMO1. This chromatin stabilization requires the lysine-rich C-terminal extension of HMO1 as truncation of the HMO1 C-terminal tail phenocopies hmo1 deletion. Since this is reminiscent of the need for the basic C-terminal domain of mammalian histone H1 in chromatin compaction, we speculate that HMO1 promotes chromatin stability by DNA bending and compaction imposed by its lysine-rich domain and that it must be evicted along with core histones for efficient DSB repair.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000072200 Ku Autoantigen An ATP-dependent DNA HELICASE that preferentially binds SINGLE-STRANDED DNA. It is a heterodimer consisting of an 80 kDa subunit (XRCC5) and 70 kDa subunit (XRCC6) that functions with DNA LIGASE IV in the repair of DOUBLE-STRANDED DNA BREAKS and V(D)J RECOMBINATION. G22P1 Antigen,Ku Antigen,Ku Autoantigen, 70 kDa,Ku Autoantigen, 80 kDa,Ku Heterodimer,Ku Protein,Ku70 Antigen,Ku80 Antigen,X-ray Repair Cross-Complementing Protein 5,X-ray Repair Cross-Complementing Protein 6,XRCC5 Protein,XRCC6 Protein,Antigen, G22P1,Antigen, Ku,Antigen, Ku70,Antigen, Ku80,Autoantigen, Ku,Heterodimer, Ku,X ray Repair Cross Complementing Protein 5,X ray Repair Cross Complementing Protein 6
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions

Related Publications

Arvind Panday, and LiJuan Xiao, and Anne Grove
December 2009, Epigenomics,
Arvind Panday, and LiJuan Xiao, and Anne Grove
May 2012, Journal of cell science,
Arvind Panday, and LiJuan Xiao, and Anne Grove
October 2005, Cell cycle (Georgetown, Tex.),
Arvind Panday, and LiJuan Xiao, and Anne Grove
September 2006, Journal of molecular histology,
Arvind Panday, and LiJuan Xiao, and Anne Grove
January 2014, Frontiers in genetics,
Arvind Panday, and LiJuan Xiao, and Anne Grove
January 2011, Cell cycle (Georgetown, Tex.),
Arvind Panday, and LiJuan Xiao, and Anne Grove
December 2011, Gene,
Arvind Panday, and LiJuan Xiao, and Anne Grove
January 2009, Aging,
Arvind Panday, and LiJuan Xiao, and Anne Grove
May 2005, Molecular and cellular biology,
Arvind Panday, and LiJuan Xiao, and Anne Grove
August 2020, Cells,
Copied contents to your clipboard!