Exon skipping therapy for Duchenne muscular dystrophy. 2015

Ryszard Kole, and Arthur M Krieg
Sarepta Therapeutics Inc., Cambridge, MA, USA. Electronic address: rkole@sarepta.com.

Duchenne muscular dystrophy (DMD) is caused mostly by internal deletions in the gene for dystrophin, a protein essential for maintaining muscle cell membrane integrity. These deletions abrogate the reading frame and the lack of dystrophin results in progressive muscle deterioration. DMD patients experience progressive loss of ambulation, followed by a need for assisted ventilation, and eventual death in mid-twenties. By the method of exon skipping in dystrophin pre-mRNA the reading frame is restored and the internally deleted but functional dystrophin is produced. Two oligonucleotide drugs that induce desired exon skipping are currently in advanced clinical trials.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D016032 Randomized Controlled Trials as Topic Works about clinical trials that involve at least one test treatment and one control treatment, concurrent enrollment and follow-up of the test- and control-treated groups, and in which the treatments to be administered are selected by a random process, such as the use of a random-numbers table. Clinical Trials, Randomized,Controlled Clinical Trials, Randomized,Trials, Randomized Clinical
D016189 Dystrophin A muscle protein localized in surface membranes which is the product of the Duchenne/Becker muscular dystrophy gene. Individuals with Duchenne muscular dystrophy usually lack dystrophin completely while those with Becker muscular dystrophy have dystrophin of an altered size. It shares features with other cytoskeletal proteins such as SPECTRIN and alpha-actinin but the precise function of dystrophin is not clear. One possible role might be to preserve the integrity and alignment of the plasma membrane to the myofibrils during muscle contraction and relaxation. MW 400 kDa.
D060172 Morpholinos Synthetic analogs of NUCLEIC ACIDS composed of morpholine ring derivatives (MORPHOLINES) linked by phosphorodimidates. One standard DNA nucleic acid base (ADENINE; GUANINE; CYTOSINE; OR THYMINE) is bound to each morpholine ring. Morpholino,Morpholino Oligonucleotide,Phosphorodiamidate Morpholino Oligomer,MORF Oligomers,Morpholino Oligonucleotides,Morpholino Oligos,PMO Oligomers,Phosphorodiamidate Morpholino Oligomers,Morpholino Oligomer, Phosphorodiamidate,Morpholino Oligomers, Phosphorodiamidate,Oligomer, Phosphorodiamidate Morpholino,Oligomers, MORF,Oligomers, PMO,Oligomers, Phosphorodiamidate Morpholino,Oligonucleotide, Morpholino,Oligonucleotides, Morpholino,Oligos, Morpholino
D020388 Muscular Dystrophy, Duchenne An X-linked recessive muscle disease caused by an inability to synthesize DYSTROPHIN, which is involved with maintaining the integrity of the sarcolemma. Muscle fibers undergo a process that features degeneration and regeneration. Clinical manifestations include proximal weakness in the first few years of life, pseudohypertrophy, cardiomyopathy (see MYOCARDIAL DISEASES), and an increased incidence of impaired mentation. Becker muscular dystrophy is a closely related condition featuring a later onset of disease (usually adolescence) and a slowly progressive course. (Adams et al., Principles of Neurology, 6th ed, p1415) Becker Muscular Dystrophy,Duchenne Muscular Dystrophy,Muscular Dystrophy, Becker,Muscular Dystrophy, Pseudohypertrophic,Becker's Muscular Dystrophy,Cardiomyopathy, Dilated, 3B,Cardiomyopathy, Dilated, X-Linked,Childhood Muscular Dystrophy, Pseudohypertrophic,Childhood Pseudohypertrophic Muscular Dystrophy,Duchenne and Becker Muscular Dystrophy,Duchenne-Becker Muscular Dystrophy,Duchenne-Type Progressive Muscular Dystrophy,Muscular Dystrophy Pseudohypertrophic Progressive, Becker Type,Muscular Dystrophy, Becker Type,Muscular Dystrophy, Childhood, Pseudohypertrophic,Muscular Dystrophy, Duchenne Type,Muscular Dystrophy, Duchenne and Becker Types,Muscular Dystrophy, Pseudohypertrophic Progressive, Becker Type,Muscular Dystrophy, Pseudohypertrophic Progressive, Duchenne Type,Muscular Dystrophy, Pseudohypertrophic, Childhood,Progressive Muscular Dystrophy, Duchenne Type,Pseudohypertrophic Childhood Muscular Dystrophy,Pseudohypertrophic Muscular Dystrophy, Childhood,Duchenne Becker Muscular Dystrophy,Duchenne Type Progressive Muscular Dystrophy,Muscular Dystrophy, Becker's,Muscular Dystrophy, Duchenne-Becker,Pseudohypertrophic Muscular Dystrophy

Related Publications

Ryszard Kole, and Arthur M Krieg
August 2011, Lancet (London, England),
Ryszard Kole, and Arthur M Krieg
November 2011, Rinsho shinkeigaku = Clinical neurology,
Ryszard Kole, and Arthur M Krieg
August 2009, Neuropathology : official journal of the Japanese Society of Neuropathology,
Ryszard Kole, and Arthur M Krieg
January 2012, Lancet (London, England),
Ryszard Kole, and Arthur M Krieg
August 2018, Human molecular genetics,
Ryszard Kole, and Arthur M Krieg
January 2021, Journal of neuromuscular diseases,
Ryszard Kole, and Arthur M Krieg
November 2011, Clinical genetics,
Ryszard Kole, and Arthur M Krieg
January 2011, Artificial DNA, PNA & XNA,
Ryszard Kole, and Arthur M Krieg
October 2017, Journal of human genetics,
Ryszard Kole, and Arthur M Krieg
February 2014, Annals of neurology,
Copied contents to your clipboard!