Overcoming Resistance to Anti-EGFR Therapy in Colorectal Cancer. 2015

Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain.

Our understanding of the genetic and nongenetic molecular alterations associated with anti-epidermal growth factor receptor (EGFR) therapy resistance in colorectal cancer (CRC) has markedly expanded in recent years. Mutations in RAS genes (KRAS/NRAS exons 2, 3, or 4) predict a lack of clinical benefit when anti-EGFR monoclonal antibodies (mAbs) are added to chemotherapy. Genetic events in additional nodes of the mitogen-activated protein kinase (MAPK)-phosphoinositide 3-kinase (PI3K) pathways that bypass EGFR signaling, such as BRAF or PIK3CA mutations or KRAS, ERBB2, or MET amplifications, also may confer resistance to cetuximab or panitumumab. Polymorphisms that block antibody binding as a result of EGFR extracellular domain mutations have been reported. Nongenetic mechanisms, including compensatory activation of receptor tyrosine kinases HER3 and MET, together with high expression of the ligands amphiregulin, transforming growth factor alpha heregulin, and hepatocyte growth factor in the tumor microenvironment also are thought to be involved in resistance. In one-third of the samples, more than one genetic event can be found, and nongenetic events most likely coexist with gene alterations. Furthermore, activation of a gene expression signature of epithelial-mesenchymal transition has been associated with reduced cellular dependence on EGFR signaling. Collectively, this body of work provides convincing evidence that the molecular heterogeneity of CRC plays an important role in the context of resistance to anti-EGFR therapy. Herein, we discuss how this knowledge has been translated into drug development strategies to overcome primary and acquired anti-EGFR resistance, with rational combinations of targeted agents in genomically selected populations, second-generation EGFR inhibitors, and other agents expected to boost the immune response at the tumor site.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D015179 Colorectal Neoplasms Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI. Colorectal Cancer,Colorectal Carcinoma,Colorectal Tumors,Neoplasms, Colorectal,Cancer, Colorectal,Cancers, Colorectal,Carcinoma, Colorectal,Carcinomas, Colorectal,Colorectal Cancers,Colorectal Carcinomas,Colorectal Neoplasm,Colorectal Tumor,Neoplasm, Colorectal,Tumor, Colorectal,Tumors, Colorectal
D055808 Drug Discovery The process of finding chemicals for potential therapeutic use. Drug Prospecting,Discovery, Drug,Prospecting, Drug
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug
D066246 ErbB Receptors A family of structurally related cell-surface receptors that signal through an intrinsic PROTEIN-TYROSINE KINASE. The receptors are activated upon binding of specific ligands which include EPIDERMAL GROWTH FACTORS, and NEUREGULINS. EGF Receptor,Epidermal Growth Factor Receptor,Epidermal Growth Factor Receptor Family Protein,Epidermal Growth Factor Receptor Protein-Tyrosine Kinase,ErbB Receptor,HER Family Receptor,Receptor, EGF,Receptor, Epidermal Growth Factor,Receptor, TGF-alpha,Receptor, Transforming-Growth Factor alpha,Receptor, Urogastrone,Receptors, Epidermal Growth Factor-Urogastrone,TGF-alpha Receptor,Transforming Growth Factor alpha Receptor,Urogastrone Receptor,c-erbB-1 Protein,erbB-1 Proto-Oncogene Protein,EGF Receptors,Epidermal Growth Factor Receptor Family Proteins,Epidermal Growth Factor Receptor Kinase,HER Family Receptors,Proto-oncogene c-ErbB-1 Protein,Receptor Tyrosine-protein Kinase erbB-1,Receptor, ErbB-1,Receptors, Epidermal Growth Factor,Epidermal Growth Factor Receptor Protein Tyrosine Kinase,ErbB-1 Receptor,Family Receptor, HER,Family Receptors, HER,Proto oncogene c ErbB 1 Protein,Proto-Oncogene Protein, erbB-1,Receptor Tyrosine protein Kinase erbB 1,Receptor, ErbB,Receptor, ErbB 1,Receptor, HER Family,Receptor, TGF alpha,Receptor, Transforming Growth Factor alpha,Receptors, EGF,Receptors, Epidermal Growth Factor Urogastrone,Receptors, ErbB,Receptors, HER Family,c erbB 1 Protein,c-ErbB-1 Protein, Proto-oncogene,erbB 1 Proto Oncogene Protein

Related Publications

Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
May 2016, Nature reviews. Gastroenterology & hepatology,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
November 2023, Clinical advances in hematology & oncology : H&O,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
September 2013, Journal of gastrointestinal oncology,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
January 2017, Oncotarget,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
April 2021, Nature cancer,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
November 2014, Cancer discovery,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
January 2021, Frontiers in oncology,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
December 2015, Clinical cancer research : an official journal of the American Association for Cancer Research,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
June 2012, Nature,
Rodrigo Dienstmann, and Ramon Salazar, and Josep Tabernero
April 2009, Gan to kagaku ryoho. Cancer & chemotherapy,
Copied contents to your clipboard!