RNA interference against TMEM97 inhibits cell proliferation, migration, and invasion in glioma cells. 2015

Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.

Gliomas are the most common form of primary brain tumor in the adult central nervous system. Altered expression and prognostic value of transmembrane protein 97 (TMEM97) has been recently reported in different types of human tumors. However, the association of TMEM97and glioma is poorly defined. Here, we reported that TMEM97 was significantly increased in glioma tissues compared to non-tumorous brain tissues. Furthermore, TMEM97 levels were progressively increased with increasing histologic tumor grade in glioma. Higher TMEM97 expression level was correlated with shorter survival time of patients with glioma. Downregulation of TMEM97 through RNA interference inhibited cell proliferation and G1/S transition in two glioma cell lines, U87 and U373. More importantly, TMEM97 silencing induced a significant decrease in the expression of G1/S transition key regulators, cyclin D1, cyclin E, CDK2, and CDK4. Additionally, downregulation of TMEM97 in glioma cells notably repressed cell migration and cell invasion. Further analysis suggested that the decreased invasion was associated with alterations in EMT markers, including E-cadherin, β-catenin, and Twist. Since expression of TMEM97 seems to be associated with the oncogenic potential of glioma, and suppression of its expression can inhibit cancer cell growth and metastasis, TMEM97 may be a potential therapeutic target in human glioma.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
March 2015, Medical oncology (Northwood, London, England),
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
January 2015, International journal of clinical and experimental medicine,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
September 2016, Oncology reports,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
February 2011, Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
January 2019, OncoTargets and therapy,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
November 2013, Journal of neuro-oncology,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
August 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
March 2017, Oncology research,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
April 2019, Oncology reports,
Guanzhong Qiu, and Wei Sun, and Yongxiang Zou, and Zheng Cai, and Peng Wang, and Xianbin Lin, and Jinxiang Huang, and Lei Jiang, and Xuehua Ding, and Guohan Hu
June 2016, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Copied contents to your clipboard!