Ammonium decreases excitatory synaptic transmission in cat spinal cord in vivo. 1989

W Raabe
Department of Neurology, Veterans Administration Medical Center, Minneapolis, Minnesota.

1. Glutamine is thought to be a precursor of the pool of glutamate that is used as synaptic transmitter. NH4+ inhibits glutaminase, the enzyme presumed to cleave glutamine into glutamate in synaptic terminals. Therefore a decrease by NH4+ of excitatory synaptic transmission in hippocampus was suggested to be due to the inability to utilize glutamine as a precursor for glutamate and subsequent transmitter depletion. This study reexamines the effects of NH4+ on excitatory synaptic transmission. 2. The effects of NH4+ on excitatory synaptic transmission from low-threshold afferent fibers, presumably Ia-afferent fibers, to motoneurons was investigated in the spinal cord of anesthetized cats in vivo. 3. Action potentials of low-threshold afferent fibers were recorded at the entry of the dorsal roots into the spinal cord. An extracellular electrode within a motoneuron nucleus recorded the action potential of low-threshold afferent fibers and the extracellular monosynaptic excitatory postsynaptic potential, i.e., the focal synaptic potential (FSP). This extracellular electrode also recorded the antidromic field potential (AFP) in response to ventral root stimulation. Electrodes on the ventral roots recorded the monosynaptic reflex (MSR) and the monosynaptic excitatory postsynaptic potential in motoneurons electrotonically conducted into the ventral roots (VR-EPSP). 4. Intravenous infusion of ammonium acetate (AA) reversibly decreased MSR, VR-EPSP, and FSP, i.e., decreased excitatory synaptic transmission. 5. The decrease of VR-EPSP and FSP was accompanied initially by a decrease of conduction and, eventually, a conduction block in presynaptic terminals of low-threshold afferent fibers. 6. The decreases of VR-EPSP and FSP were also accompanied by the transient appearance of a reflex discharge, triggered by VR-EPSPs of decreased amplitude, and changes of the AFP indicating increased invasion of motoneuron somata by antidromic action potentials. 7. It is suggested that NH4+ depolarizes intraspinal Ia-afferent fibers and motoneurons. This depolarization initially decreases and then blocks conduction of action potentials into the presynaptic terminals of Ia-afferent fibers. The conduction block prevents the release of excitatory transmitter and decreases excitatory synaptic transmission. 8. The suggested depolarizing action of NH4+ may be due to K+-like ionic properties of NH4+ and/or an inhibition of K+-uptake into astrocytes. 9. The conduction block in presynaptic terminals of low-threshold afferent fibers can fully explain the decrease of excitatory synaptic transmission by NH4+. Because of the conduction block in presynaptic terminals, this study does not permit a conclusion as to an inhibition by NH4+ fo the utilization of glutamine as a precursor for glutamate used as synaptic transmitter.

UI MeSH Term Description Entries
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
Copied contents to your clipboard!