Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. 2015

Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401.

Cytokinesis separates cells by contraction of a ring composed of filamentous actin (F-actin) and type II myosin. Iqg1, an IQGAP family member, is an essential protein in Saccharomyces cerevisiae required for assembly and contraction of the actomyosin ring. Localization of F-actin to the ring occurs only after anaphase and is mediated by the calponin homology domain (CHD) of Iqg1, but the regulatory mechanisms that temporally restrict actin ring assembly are not well defined. We tested the hypothesis that dephosphorylation of four perfect cyclin-dependent kinase (Cdk) sites flanking the CHD promotes actin ring formation, using site-specific alanine mutants. Cells expressing the nonphosphorylatable iqg1-4A allele formed actin rings before anaphase and exhibited defects in myosin contraction and cytokinesis. The Cdc14 phosphatase is required for normal cytokinesis and acts on specific Cdk phosphorylation sites. Overexpression of Cdc14 resulted in premature actin ring assembly, whereas inhibition of Cdc14 function prevented actin ring formation. Cdc14 associated with Iqg1, dependent on several CHD-flanking Cdk sites, and efficiently dephosphorylated these sites in vitro. Of importance, the iqg1-4A mutant rescued the inability of cdc14-1 cells to form actin rings. Our data support a model in which dephosphorylation of Cdk sites around the Iqg1 CHD by Cdc14 is both necessary and sufficient to promote actin ring formation. Temporal control of actin ring assembly by Cdk and Cdc14 may help to ensure that cytokinesis onset occurs after nuclear division is complete.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D000096985 Calponins A family of actin binding proteins mostly in smooth muscle. Calponins include most abundant alpha-calponin (h1 or basic); beta-calponin; neutral calponin (h2 calponin); acidic calponin, SM22, and transgelin. Calponin family members have N-terminal single Calponin Homology (CH) domain and multiple C-terminus 23-amino acids long calponin-like repeats called CLICK-23. Calponins participate in modulation of smooth muscle contraction by binding to ACTINS (F- and G-Actins), CALMODULIN and TROPOMYSIN. Calponin,Calponin Family Proteins
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000205 Actomyosin A protein complex of actin and MYOSINS occurring in muscle. It is the essential contractile substance of muscle.
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D048749 Cytokinesis The process by which the CYTOPLASM of a cell is divided. Cytoplasmic Division,Cytokineses,Cytoplasmic Divisions,Division, Cytoplasmic,Divisions, Cytoplasmic

Related Publications

Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
July 2005, Cell cycle (Georgetown, Tex.),
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
October 2012, Cytoskeleton (Hoboken, N.J.),
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
May 2016, Seminars in cell & developmental biology,
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
June 2012, Genetics,
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
February 2014, Molecular & cellular proteomics : MCP,
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
May 2000, Current biology : CB,
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
June 2017, Seminars in cell & developmental biology,
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
June 2010, Journal of cell science,
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
January 2016, Methods in molecular biology (Clifton, N.J.),
Daniel P Miller, and Hana Hall, and Ryan Chaparian, and Madison Mara, and Alison Mueller, and Mark C Hall, and Katie B Shannon
March 2014, Molecular biology of the cell,
Copied contents to your clipboard!