A novel role for Celf1 in vegetal RNA localization during Xenopus oogenesis. 2015

Diana Bauermeister, and Maike Claußen, and Tomas Pieler
Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany. Electronic address: diana.obermann@med.uni-goettingen.de.

The localization of certain mRNAs to the vegetal cortex of Xenopus oocytes is of crucial importance for germ cell development and early embryonic patterning. Vegetal RNA localization is mediated by cis-acting RNA localization elements (LE). Several proteins assemble on the RNA LE and direct transport to the vegetal cortex. Although a number of localization RNP components have been identified, their full composition is unknown. In an RNA affinity purification approach, using the dead end 1 (dnd1) RNA LE, we identified Xenopus Celf1 as a novel component of vegetal localization RNP complexes. Celf1 is part of an RNP complex together with known vegetal localization factors and shows specific interactions with LEs from several but not all vegetally localizing RNAs. Immunostaining experiments reveal co-localization of Celf1 with vegetally localizing RNA and with known localization factors. Inhibition of Celf1 protein binding by localization element mutagenesis as well as Celf1 overexpression interfere with vegetal RNA localization. These results argue for a role of Celf1 in vegetal RNA localization during Xenopus oogenesis.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

Diana Bauermeister, and Maike Claußen, and Tomas Pieler
July 2009, The Journal of biological chemistry,
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
May 2010, Methods (San Diego, Calif.),
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
December 1996, Development (Cambridge, England),
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
January 2022, Frontiers in cell and developmental biology,
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
May 2012, Human genetics & embryology : current research,
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
March 1979, Developmental biology,
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
February 1992, Science (New York, N.Y.),
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
December 1996, Molecular reproduction and development,
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
November 2010, The FEBS journal,
Diana Bauermeister, and Maike Claußen, and Tomas Pieler
February 2000, Molecular reproduction and development,
Copied contents to your clipboard!