Cytologic observations on axotomized feline Betz cells. 1. Qualitative electron microscopic findings. 1979

K D Barron, and M P Dentinger

Adult cats survived left lateral funiculotomy 1 to 153 days. The pericruciate cortex was studied electron microscopically in these as well as sham-operated and unoperated animals. Ten days after surgery Betz cells of the right pericruciate cortex displayed disaggregation of cytoplasmic ribosomes; random dispersal and degranulation of the normally compact arrays of cisterns of rough ER; in some cells perinuclear and peripheral disposition of remaining Nissl bodies; retispersion of the Golgi apparatus; and, uncommonly, neurofilamentous hyperplasia. Fourteen days postoperatively cytoplasmic ribosomes were largely regrouped in rosette arrangements and Golgi membranes were evenly distributed in the cytoplasm. Further reversion of the ER toward a normal appearance occurred 28 days postoperatively but substantial perikaryal atrophy had supervened in many neurons by 49-153 days after surgery. Evidence of nerve cell death was not found. Concentric membranous arrays derived from ER and associated with autophagic bodies and mitochondria were identified in dendrites of normals and cats that had been operated upon, perhaps more frequently contralateral to the spinal operation. Electron-dense and electron-lucent degenerative changes in dendrites also occurred, especially early after operation. Degenerating myelin sheaths were detected in the pericruciate cortex of animals that had been operated upon and sometimes were captured in the process of phagocytosis by oligodendrocytes as well as astrocytes and microglia. The long-term persistence of axotomized Betz cells, albeit in an atrophic state, and the reversibility of some of the cytologic responses to axon injury suggest that these neurons may retain a capacity for axon regeneration that could be mobilized, as by pharmacologic means.

UI MeSH Term Description Entries
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

K D Barron, and M P Dentinger
September 1966, The Journal of physiology,
K D Barron, and M P Dentinger
December 1972, The Bulletin of Tokyo Medical and Dental University,
K D Barron, and M P Dentinger
April 1967, Experimental and molecular pathology,
K D Barron, and M P Dentinger
December 1984, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
K D Barron, and M P Dentinger
January 1970, Archiv fur die gesamte Virusforschung,
K D Barron, and M P Dentinger
October 1963, The American journal of pathology,
K D Barron, and M P Dentinger
January 1955, Experimental medicine and surgery,
K D Barron, and M P Dentinger
December 1960, The British journal of dermatology,
K D Barron, and M P Dentinger
January 1969, Nihon geka hokan. Archiv fur japanische Chirurgie,
K D Barron, and M P Dentinger
January 1966, The Journal of experimental medicine,
Copied contents to your clipboard!