The molecular mechanism and physiological role of cytoplasmic streaming. 2015

Motoki Tominaga, and Kohji Ito
Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan. Electronic address: motominaga@waseda.jp.

Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size.

UI MeSH Term Description Entries
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D003595 Cytoplasmic Streaming The movement of CYTOPLASM within a CELL. It serves as an internal transport system for moving essential substances throughout the cell, and in single-celled organisms, such as the AMOEBA, it is responsible for the movement (CELL MOVEMENT) of the entire cell. Protoplasmic Streaming,Cytoplasmic Streamings,Protoplasmic Streamings,Streaming, Cytoplasmic,Streaming, Protoplasmic,Streamings, Cytoplasmic,Streamings, Protoplasmic
D018521 Plant Physiological Phenomena The physiological processes, properties, and states characteristic of plants. Plant Physiological Processes,Plant Physiology,Physiology, Plant,Plant Physiologic Phenomena,Plant Physiologic Phenomenon,Plant Physiological Phenomenon,Plant Physiological Process,Phenomena, Plant Physiologic,Phenomena, Plant Physiological,Phenomenon, Plant Physiologic,Phenomenon, Plant Physiological,Phenomenons, Plant Physiological,Physiologic Phenomena, Plant,Physiologic Phenomenon, Plant,Physiological Phenomena, Plant,Physiological Phenomenon, Plant,Physiological Phenomenons, Plant,Physiological Process, Plant,Physiological Processes, Plant,Plant Physiological Phenomenons,Process, Plant Physiological,Processes, Plant Physiological

Related Publications

Motoki Tominaga, and Kohji Ito
April 2010, FEBS letters,
Motoki Tominaga, and Kohji Ito
July 1984, Cell structure and function,
Motoki Tominaga, and Kohji Ito
May 1975, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
Motoki Tominaga, and Kohji Ito
February 1986, Journal of cell science,
Motoki Tominaga, and Kohji Ito
June 2012, Journal of the Royal Society, Interface,
Motoki Tominaga, and Kohji Ito
January 1973, Journal of cell science,
Motoki Tominaga, and Kohji Ito
February 2004, Current opinion in cell biology,
Motoki Tominaga, and Kohji Ito
October 2016, Annual review of cell and developmental biology,
Motoki Tominaga, and Kohji Ito
October 2006, Plant & cell physiology,
Motoki Tominaga, and Kohji Ito
April 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!