[Intrathecal Baclofen Therapy for Cerebral Palsy]. 2015

Haruhiko Kishima
Department of Neurosurgery, Osaka University Graduate School of Medicine.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D009128 Muscle Spasticity A form of muscle hypertonia associated with upper MOTOR NEURON DISEASE. Resistance to passive stretch of a spastic muscle results in minimal initial resistance (a "free interval") followed by an incremental increase in muscle tone. Tone increases in proportion to the velocity of stretch. Spasticity is usually accompanied by HYPERREFLEXIA and variable degrees of MUSCLE WEAKNESS. (From Adams et al., Principles of Neurology, 6th ed, p54) Clasp-Knife Spasticity,Spastic,Clasp Knife Spasticity,Spasticity, Clasp-Knife,Spasticity, Muscle
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002547 Cerebral Palsy A heterogeneous group of nonprogressive motor disorders caused by chronic brain injuries that originate in the prenatal period, perinatal period, or first few years of life. The four major subtypes are spastic, athetoid, ataxic, and mixed cerebral palsy, with spastic forms being the most common. The motor disorder may range from difficulties with fine motor control to severe spasticity (see MUSCLE SPASTICITY) in all limbs. Spastic diplegia (Little disease) is the most common subtype, and is characterized by spasticity that is more prominent in the legs than in the arms. Pathologically, this condition may be associated with LEUKOMALACIA, PERIVENTRICULAR. (From Dev Med Child Neurol 1998 Aug;40(8):520-7) Diplegic Infantile Cerebral Palsy,Little Disease,Monoplegic Cerebral Palsy,Quadriplegic Infantile Cerebral Palsy,Spastic Diplegia,CP (Cerebral Palsy),Cerebral Palsy, Athetoid,Cerebral Palsy, Atonic,Cerebral Palsy, Congenital,Cerebral Palsy, Diplegic, Infantile,Cerebral Palsy, Dyskinetic,Cerebral Palsy, Dystonic-Rigid,Cerebral Palsy, Hypotonic,Cerebral Palsy, Mixed,Cerebral Palsy, Monoplegic, Infantile,Cerebral Palsy, Quadriplegic, Infantile,Cerebral Palsy, Rolandic Type,Cerebral Palsy, Spastic,Congenital Cerebral Palsy,Diplegia, Spastic,Infantile Cerebral Palsy, Diplegic,Infantile Cerebral Palsy, Monoplegic,Infantile Cerebral Palsy, Quadriplegic,Little's Disease,Monoplegic Infantile Cerebral Palsy,Rolandic Type Cerebral Palsy,Athetoid Cerebral Palsy,Atonic Cerebral Palsy,Cerebral Palsies, Athetoid,Cerebral Palsies, Dyskinetic,Cerebral Palsies, Dystonic-Rigid,Cerebral Palsies, Monoplegic,Cerebral Palsy, Dystonic Rigid,Cerebral Palsy, Monoplegic,Diplegias, Spastic,Dyskinetic Cerebral Palsy,Dystonic-Rigid Cerebral Palsies,Dystonic-Rigid Cerebral Palsy,Hypotonic Cerebral Palsies,Hypotonic Cerebral Palsy,Mixed Cerebral Palsies,Mixed Cerebral Palsy,Monoplegic Cerebral Palsies,Spastic Cerebral Palsies,Spastic Cerebral Palsy,Spastic Diplegias
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes

Related Publications

Haruhiko Kishima
April 2003, Archives of physical medicine and rehabilitation,
Haruhiko Kishima
January 2000, Orthopedic nursing,
Haruhiko Kishima
April 1999, Neuromodulation : journal of the International Neuromodulation Society,
Haruhiko Kishima
August 2005, Pediatric neurology,
Haruhiko Kishima
November 1996, Journal of child neurology,
Haruhiko Kishima
April 2009, Pediatric neurology,
Haruhiko Kishima
December 2002, Archives of physical medicine and rehabilitation,
Haruhiko Kishima
May 2011, Developmental medicine and child neurology,
Copied contents to your clipboard!