Erythrocyte-specific overproduction of adenosine deaminase: molecular genetic studies. 1989

E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

A kindred with an autosomal dominant form of chronic hemolytic anemia has been found to have a 40- to 70-fold elevation in erythrocyte adenosine deaminase (ADA) activity in association with depletion of red blood cell (RBC) ATP pools. ADA activities in B lymphoblasts, skin fibroblasts, and granulocytes were normal. There were no alterations in the kinetic properties of partially purified proband ADA. We have shown by Western blot analysis that the elevation in ADA activity is accompanied by a corresponding increase in the amount of immunoreactive ADA protein. Southern blot analysis of proband DNA ruled out gene amplification and revealed no gross insertions, deletions, or rearrangements in the ADA gene. Northern blot analysis demonstrated a marked increase in the amount of ADA mRNA in proband and sibling reticulocytes compared to high reticulocyte controls. ADA mRNA levels in B lymphoblasts from the proband, sibling, and GM558 cell line were normal. Cloning and sequencing of proband reticulocyte cDNA revealed normal ADA mRNA sequence. No polymorphisms were detected among the seven clones studied. RNase mapping of the 5'- and 3'-non-coding sequences confirmed the quantitative increase in reticulocyte ADA mRNA and verified that these regions were normal in length and sequence. Southern blot analysis of DNA from four affected and three unaffected family members revealed two restriction fragment length polymorphisms (RFLPs) which segregate with the ADA allele from the unaffected grandfather. Both RFLPs are present in the unaffected grandchild and absent in the affected grandchild. These findings are consistent with a cis- mutation within the ADA gene, but they do not rule out a trans- mutation affecting some non-ADA regulatory factor. We conclude that erythrocyte-specific ADA overproduction is associated with increased amounts of structurally normal ADA mRNA. This increase may result from either increased transcription of the ADA gene or altered post-transcriptional processing resulting in increased stability of the RNA transcript. Further elucidation of the defect should provide valuable insights into the normal tissue-specific regulation of the ADA gene and the mechanisms by which erythroid cells regulate gene expression during differentiation.

UI MeSH Term Description Entries
D009700 Nucleoside Deaminases Catalyze the hydrolysis of nucleosides with the elimination of ammonia. Deaminases, Nucleoside
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot

Related Publications

E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
July 1989, Blood,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
January 1970, Humangenetik,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
January 2000, Advances in experimental medicine and biology,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
January 1975, Human heredity,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
January 1989, Advances in experimental medicine and biology,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
January 1977, Advances in experimental medicine and biology,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
January 2007, Nucleosides, nucleotides & nucleic acids,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
January 1981, Acta biologica et medica Germanica,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
July 1983, The Journal of biological chemistry,
E G Chottiner, and T E Gribbin, and D Ginsburg, and B S Mitchell
February 1988, The Japanese journal of experimental medicine,
Copied contents to your clipboard!