Epidermal growth factor receptor imaging in human head and neck cancer xenografts. 2015

Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
a Department of Radiation Oncology , Radboud University Medical Center , Nijmegen , The Netherlands.

Molecular imaging of specific biomarkers can have prognostic, predictive or monitoring value in head and neck squamous cell carcinoma (HNSCC). The epidermal growth factor receptor (EGFR) is involved in various radiation resistance mechanisms as it steers the pathways related to DNA damage repair, proliferation, hypoxia and apoptosis. Radiolabeled labeled F(ab')2 fragments of the EGFR antibody cetuximab can be applied for non-invasive imaging of this receptor. Preclinical studies have shown that radioresistant tumors had a higher tracer uptake after irradiation, probably due to upregulation of membranous EGFR, thereby increasing target availability possibly as a compensation mechanism. Tumors with increased EGFR availability were also more responsive to the EGFR inhibitor cetuximab. Potentially, radionuclide imaging of the EGFR can be applied for monitoring treatment regimens in clinical practice.

UI MeSH Term Description Entries
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D006258 Head and Neck Neoplasms Soft tissue tumors or cancer arising from the mucosal surfaces of the LIP; oral cavity; PHARYNX; LARYNX; and cervical esophagus. Other sites included are the NOSE and PARANASAL SINUSES; SALIVARY GLANDS; THYROID GLAND and PARATHYROID GLANDS; and MELANOMA and non-melanoma skin cancers of the head and neck. (from Holland et al., Cancer Medicine, 4th ed, p1651) Cancer of Head and Neck,Head Cancer,Head Neoplasm,Head and Neck Cancer,Head and Neck Neoplasm,Neck Cancer,Neck Neoplasm,Neck Neoplasms,Neoplasms, Upper Aerodigestive Tract,UADT Neoplasm,Upper Aerodigestive Tract Neoplasm,Upper Aerodigestive Tract Neoplasms,Cancer of Head,Cancer of Neck,Cancer of the Head,Cancer of the Head and Neck,Cancer of the Neck,Head Neoplasms,Head, Neck Neoplasms,Neoplasms, Head,Neoplasms, Head and Neck,Neoplasms, Neck,UADT Neoplasms,Cancer, Head,Cancer, Neck,Cancers, Head,Cancers, Neck,Head Cancers,Neck Cancers,Neoplasm, Head,Neoplasm, Neck,Neoplasm, UADT,Neoplasms, UADT
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068818 Cetuximab A chimeric monoclonal antibody that functions as an ANTINEOPLASTIC AGENT through its binding to the EPIDERMAL GROWTH FACTOR RECEPTOR, where it prevents the binding and signaling action of cell growth and survival factors. C225,Erbitux,IMC C225,IMC-C225,MAb C225
D000077195 Squamous Cell Carcinoma of Head and Neck The most common type of head and neck carcinoma that originates from cells on the surface of the NASAL CAVITY; MOUTH; PARANASAL SINUSES, SALIVARY GLANDS, and LARYNX. Mutations in TNFRSF10B, PTEN, and ING1 genes are associated with this cancer. HNSCC,Head And Neck Squamous Cell Carcinomas,Hypopharyngeal Squamous Cell Carcinoma,Laryngeal Squamous Cell Carcinoma,Oral Cavity Squamous Cell Carcinoma,Oral Squamous Cell Carcinoma,Oral Squamous Cell Carcinomas,Oral Tongue Squamous Cell Carcinoma,Oropharyngeal Squamous Cell Carcinoma,Squamous Cell Carcinoma of Larynx,Squamous Cell Carcinoma of the Larynx,Squamous Cell Carcinoma of the Mouth,Squamous Cell Carcinoma of the Nasal Cavity,Carcinoma, Squamous Cell of Head and Neck,Head and Neck Squamous Cell Carcinoma,Squamous Cell Carcinoma of the Head and Neck,Squamous Cell Carcinoma, Head And Neck
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers
D057054 Molecular Imaging The use of molecularly targeted imaging probes to localize and/or monitor biochemical and cellular processes via various imaging modalities that include RADIONUCLIDE IMAGING; ULTRASONOGRAPHY; MAGNETIC RESONANCE IMAGING; FLUORESCENCE IMAGING; and MICROSCOPY. Imaging, Molecular
D023041 Xenograft Model Antitumor Assays In vivo methods of screening investigative anticancer drugs, biologic response modifiers or radiotherapies. Human tumor tissue or cells are transplanted into mice or rats followed by tumor treatment regimens. A variety of outcomes are monitored to assess antitumor effectiveness. Tumor Xenograft Assay,Xenograft Antitumor Assays,Antitumor Assays, Xenograft Model,Antitumor Assay, Xenograft,Antitumor Assays, Xenograft,Assay, Tumor Xenograft,Assay, Xenograft Antitumor,Assays, Tumor Xenograft,Assays, Xenograft Antitumor,Tumor Xenograft Assays,Xenograft Antitumor Assay,Xenograft Assay, Tumor,Xenograft Assays, Tumor

Related Publications

Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
January 2003, Head & neck,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
June 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
January 2022, Cancer journal (Sudbury, Mass.),
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
August 2010, Molecular cancer therapeutics,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
January 2006, Critical reviews in oncology/hematology,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
August 2021, Otolaryngologic clinics of North America,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
November 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
September 1994, British journal of cancer,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
November 2003, Cancer research,
Laura K van Dijk, and Otto C Boerman, and Johannes H A M Kaanders, and Johan Bussink
October 2014, Oral oncology,
Copied contents to your clipboard!