Structure of the 5' flanking region of the gene encoding human glycophorin A and analysis of its multiple transcripts. 1989

C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
Unité INSERM U76, Institut National de Transfusion Sanguine, Paris, France.

Glycophorin A (GPA), the major sialoglycoprotein of human erythrocytes, is the carrier for blood group MN antigens and a receptor for viruses, bacteria and parasites. (1) Three distinct GPA mRNAs (1.0, 1.7 and 2.2 kb) have been previously identified in erythroid tissues by Northern-blot analysis. It is shown here by sequence analysis of several human fetal liver cDNAs, and by transcription start point (tsp) determination using primer extension analysis, that the production of the multiple GPA mRNAs is governed by poly(A) site choice generating 3'-untranslated regions of different length, and not by the tsp heterogeneity, since all messages exhibit the same cap site (tsp). (2) The structural gene encoding GPA has been recently cloned [Vignal et al., Eur. J. Biochem. 184 (1989) 337-344; Kudo and Fukuda, Proc. Natl. Acad. Sci. USA 86 (1989) 4619-4623] and we have now determined the sequence of a DNA genomic fragment upstream from the tsp. This fragment does not contain the typical TATA and CAAT boxes found in a number of tissue-specific genes, but contains typical motifs like the CACC, nuclear factor erythroid 1 and 2 elements, which have been identified recently in several erythroid-specific promoters, therefore suggesting that transcription of these genes might be regulated by the same or analogous factors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006021 Glycophorins The major sialoglycoprotein of human erythrocyte membranes. It consists of at least two sialoglycopeptides and is composed of 60% carbohydrate including sialic acid and 40% protein. It is involved in a number of different biological activities including the binding of MN blood groups, influenza viruses, kidney bean phytohemagglutinin, and wheat germ agglutinin. Erythrocyte Sialoglycoproteins,Glycoconnectin,Glycoconnectins,Glycophorin,Glycophorin D,MN Sialoglycoprotein,Red Blood Cell Membrane Sialoglycoprotein,Glycophorin A,Glycophorin A(M),Glycophorin B,Glycophorin C,Glycophorin E,Glycophorin HA,Ss Erythrocyte Membrane Sialoglycoproteins,Ss Sialoglycoprotein,beta-Sialoglycoprotein,Sialoglycoprotein, MN,Sialoglycoprotein, Ss,Sialoglycoproteins, Erythrocyte,beta Sialoglycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
January 2022, Molekuliarnaia biologiia,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
November 1998, Somatic cell and molecular genetics,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
September 1996, Molecular marine biology and biotechnology,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
November 1993, Gene,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
April 1989, Gene,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
December 1995, Gene,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
May 1996, Gene,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
March 1994, Biochimica et biophysica acta,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
March 1995, Biochemical and biophysical research communications,
C Rahuel, and A Vignal, and J London, and S Hamel, and P H Roméo, and Y Colin, and J P Cartron
September 1989, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!